Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_4_a10, author = {O. V. Rubleva}, title = {The {Ricci} {Curvature} of a {Weighted} {Tree}}, journal = {Matemati\v{c}eskie zametki}, pages = {586--596}, publisher = {mathdoc}, volume = {100}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a10/} }
O. V. Rubleva. The Ricci Curvature of a Weighted Tree. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 586-596. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a10/
[1] A. Besse, Mnogoobraziya Einshteina, Mir, M., 1990 | MR
[2] G. Perelman, The Entropy Formula for the Ricci Flow and Its Geometric Applications, 2002, arXiv: 0211159
[3] G. Perelman, Ricci Flow with Surgery on Three-Manifolds, 2003, arXiv: 0303109
[4] D. Bakry, M. Emery, “Diffusions hypercontractives”, Seminaire de Probabilites, 1123, Lecture Notes in Math., Berlin, 1985, 177–206 | MR | Zbl
[5] Y. Ollivier, “Ricci curvature of Markov chains on metric spaces”, J. Funct. Anal., 256:3 (2009), 810–864 | DOI | MR | Zbl
[6] Fan Chung and S.-T. Yau, “Logarithmic Harnack inequalities”, Math. Res. Lett., 1996, 793–812 | MR
[7] Y. Lin, L. Y. Lu and S. T. Yau, “Ricci curvature of graphs”, Tohoku Math. J., 63 (2011), 605–627 | DOI | MR | Zbl
[8] L. V. Kantorovich, “O peremeschenii mass”, Teoriya predstavlenii, dinamicheskie sistemy. XI, Spetsialnyi vypusk, Zap. nauchn. sem. POMI, 312, POMI, SPb., 2004, 11–14 | MR | Zbl
[9] A. O. Ivanov, A. A. Tuzhilin, “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[10] L. Euler, “The Kenigsberg bridges”, Sci. Amer., 1953, 66–70 | DOI