On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 492-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau$ be a faithful normal semifinite trace on a von Neumann algebra $\mathscr M$, let $p$, $0$, be a number, and let $L_p(\mathscr M,\tau)$ be the space of operators whose $p$th power is integrable (with respect to $\tau$). Let $P$ and $Q$ be $\tau$-measurable idempotents, and let $A\equiv P-Q$. In this case, 1) if $A\ge 0$, then $A$ is a projection and $QA=AQ=0$; 2) if $P$ is quasinormal, then $P$ is a projection; 3) if $Q\in\mathscr M$ and $A\in L_p(\mathscr M, \tau)$, then $A^2\in L_p(\mathscr M,\tau)$. Let $n$ be a positive integer, $n>2$, and $A=A^n\in\mathscr M$. In this case, 1) if $A\ne 0$, then the values of the nonincreasing rearrangement $\mu_t(A)$ belong to the set $\{0\}\cup[\|A^{n-2}\|^{-1},\|A\|]$ for all $t>0$; 2) either $\mu_t(A)\ge 1$ for all $t>0$ or there is a $t_0>0$ such that $\mu_t(A)=0$ for all $t>t_0$. For every $\tau$-measurable idempotent $Q$, there is a unique rank projection $P\in\mathscr M$ with $QP=P$, $PQ=Q$, and $P\mathscr M=Q\mathscr M$. There is a unique decomposition $Q=P+Z$, where $Z^2=0$$ZP=0$, and $PZ=Z$. Here, if $Q\in L_p(\mathscr M,\tau)$, then $P$ is integrable, and $\tau(Q)=\tau(P)$ for $p=1$. If $A\in L_1(\mathscr M,\tau)$ and if $A=A^3$ and $A-A^2\in\mathscr M$, then $\tau(A)\in\mathbb R$.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, nonincreasing rearrangement, $\tau$-compact operator, integrable operator, quasinormal operator, idempotent, projection, rank projection.
@article{MZM_2016_100_4_a1,
     author = {A. M. Bikchentaev},
     title = {On {Idempotent} $\tau${-Measurable} {Operators} {Affiliated} to a von {Neumann} {Algebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {492--503},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra
JO  - Matematičeskie zametki
PY  - 2016
SP  - 492
EP  - 503
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a1/
LA  - ru
ID  - MZM_2016_100_4_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra
%J Matematičeskie zametki
%D 2016
%P 492-503
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a1/
%G ru
%F MZM_2016_100_4_a1
A. M. Bikchentaev. On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 492-503. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a1/

[1] I. E. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[2] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[3] F. J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[4] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[5] A. M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, Amer. Math. Soc., Providence, RI, 1992, 179–187

[6] P. G. Dodds, T. K.-Y. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl

[7] L. G. Brown, H. Kosaki, “Jensen's inequality in semifinite von Neumann algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl

[8] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[9] A. M. Bikchentaev, “K teorii $\tau$-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 98:3 (2015), 337–348 | DOI | Zbl

[10] A. M. Bikchentaev, “O normalnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 96:3 (2014), 350-360 | DOI | MR | Zbl

[11] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR

[12] A. M. Bikchentaev, “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 41–54 | MR

[13] A. M. Bikchentaev, “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov”, Sib. matem. zhurn., 46:1 (2005), 32–45 | Zbl

[14] J. J. Koliha, “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 24:1 (2001), 91–103 | MR

[15] A. M. Bikchentaev, “Sled i integriruemye operatory, prisoedinennye k polukonechnoi algebre fon Neimana”, DAN, 466:2 (2016), 137–140 | Zbl