Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_3_a9, author = {K. B. Sabitov}, title = {Solutions of {Fixed} {Sign} of {Higher-Order} {Inhomogeneous} {Equations} of {Mixed} {Elliptic-Hyperbolic} {Type}}, journal = {Matemati\v{c}eskie zametki}, pages = {433--440}, publisher = {mathdoc}, volume = {100}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a9/} }
TY - JOUR AU - K. B. Sabitov TI - Solutions of Fixed Sign of Higher-Order Inhomogeneous Equations of Mixed Elliptic-Hyperbolic Type JO - Matematičeskie zametki PY - 2016 SP - 433 EP - 440 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a9/ LA - ru ID - MZM_2016_100_3_a9 ER -
K. B. Sabitov. Solutions of Fixed Sign of Higher-Order Inhomogeneous Equations of Mixed Elliptic-Hyperbolic Type. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 433-440. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a9/
[1] A. V. Bitsadze, Izbrannye trudy, Nauka, Nalchik, 2012
[2] R. Ya. Agishev, “K probleme uravnenii smeshannogo tipa”, Tr. Kazansk. aviatsion. in-ta, 35:3 (1957), 3–10
[3] V. I. Zhegalov, “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo tipa chetvertogo poryadka”, Izv. vuzov. Matem., 1960, no. 4, 73–78 | MR | Zbl
[4] V. I. Zhegalov, “Kraevaya zadacha dlya uravneniya smeshannogo tipa vysshego poryadka”, Dokl. AN SSSR, 136:2 (1961), 274–276 | Zbl
[5] S. Agmon, “Maximum theorems for solutions of higher order elliptic equations”, Bull. Amer. Math. Soc., 66 (1960), 77–80 | DOI | MR | Zbl
[6] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl
[7] V. G. Mazya, B. A. Plamenevskii, “O printsipe maksimuma dlya bigarmonicheskogo uravneniya v oblasti s konicheskimi tochkami”, Izv. vuzov. Matem., 1981, no. 2, 52–59 | MR | Zbl
[8] J. Pipher, G. Verchota, “A maximum principle for biharmonic functions in Lipschitz and $C^1$ domains”, Comment. Math. Helv., 68:3 (1993), 385–414 | DOI | MR | Zbl
[9] J. Pipher, G. C. Verchota, “Maximum principles for the polyharmonic equation on Lipschitz domains”, Potential Anal., 4:6 (1995), 615–636 | DOI | MR | Zbl
[10] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl
[11] N. I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti. Osnovnye uravneniya, ploskaya teoriya uprugosti, kruchenie i izgib, Nauka, M., 1966 | Zbl
[12] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR | Zbl
[13] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gostekhizdat, M.-L., 1950 | Zbl
[14] K. B. Sabitov, Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013
[15] K. B. Sabitov, “Postroenie v yavnom vide reshenii zadach Darbu dlya telegrafnogo uravneniya i ikh primenenie pri obraschenii integralnykh uravnenii. I”, Differents. uravnen., 26:6 (1990), 1023–1032 | MR | Zbl