Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_3_a8, author = {K. V. Runovskii and N. V. Omel'chenko}, title = {Mixed {Generalized} {Modulus} of {Smoothness} and {Approximation} by the {``Angle''} of {Trigonometric} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {421--432}, publisher = {mathdoc}, volume = {100}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/} }
TY - JOUR AU - K. V. Runovskii AU - N. V. Omel'chenko TI - Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials JO - Matematičeskie zametki PY - 2016 SP - 421 EP - 432 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/ LA - ru ID - MZM_2016_100_3_a8 ER -
%0 Journal Article %A K. V. Runovskii %A N. V. Omel'chenko %T Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials %J Matematičeskie zametki %D 2016 %P 421-432 %V 100 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/ %G ru %F MZM_2016_100_3_a8
K. V. Runovskii; N. V. Omel'chenko. Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 421-432. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/
[1] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4 (1963), 1342–1364 | Zbl
[2] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl
[3] M. K. Potapov, “Priblizhenie “uglom” i teoremy vlozheniya”, Math. Balkanica, 2 (1972), 183–198 | Zbl
[4] M. K. Potapov, “O priblizhenii “uglom””, Trudy konferentsii po konstruktivnoi teorii funktsii, Budapesht, 1972, 371–399 | Zbl
[5] K. V. Runovskii, “O semeistvakh lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0
1$”, Matem. sb., 184:2 (1993), 33–42 | MR | Zbl[6] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0
1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl[7] K. V. Runovskii, Nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1990
[8] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI | Zbl
[9] M. K. Potapov, B. V. Simonov, “Svoistva smeshannogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 6, 31–40 | MR | Zbl
[10] K. Runovski, H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Birkhäuser, Cham, 2014, 269–298 | MR | Zbl
[11] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010
[12] R. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[13] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–227 | MR | Zbl
[14] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, 2011
[15] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives”, Z. Anal. Anwend., 34:1 (2015), 109–125 | MR | Zbl