Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 421-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of general mixed modulus of smoothness of periodic functions of several variables in the spaces $L_p$ is introduced. The proposed construction is, on the one hand, a natural generalization of the general modulus of smoothness in the one-dimensional case, which was introduced in a paper of the first author and in which the coefficients of the values of a given function at the nodes of a uniform lattice are the Fourier coefficients of a $2\pi$-periodic function called the generator of the modulus; while, on the other hand, this construction is a generalization of classical mixed moduli of smoothness and of mixed moduli of arbitrary positive order. For the modulus introduced in the paper, in the case $1 \le p \le +\infty$, the direct and inverse theorems on the approximation by the “angle” of trigonometric polynomials are proved. The previous estimates of such type are obtained as direct consequences of general results, new mixed moduli are constructed, and a universal structural description of classes of functions whose best approximation by “angle” have a certain order of convergence to zero is given.
Keywords: generalized modulus of smoothness, mixed modulus of smoothness, approximation by “angle,” direct and inverse approximation theory.
@article{MZM_2016_100_3_a8,
     author = {K. V. Runovskii and N. V. Omel'chenko},
     title = {Mixed {Generalized} {Modulus} of {Smoothness} and {Approximation} by the {``Angle''} of {Trigonometric} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--432},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/}
}
TY  - JOUR
AU  - K. V. Runovskii
AU  - N. V. Omel'chenko
TI  - Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials
JO  - Matematičeskie zametki
PY  - 2016
SP  - 421
EP  - 432
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/
LA  - ru
ID  - MZM_2016_100_3_a8
ER  - 
%0 Journal Article
%A K. V. Runovskii
%A N. V. Omel'chenko
%T Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials
%J Matematičeskie zametki
%D 2016
%P 421-432
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/
%G ru
%F MZM_2016_100_3_a8
K. V. Runovskii; N. V. Omel'chenko. Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 421-432. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/

[1] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4 (1963), 1342–1364 | Zbl

[2] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[3] M. K. Potapov, “Priblizhenie “uglom” i teoremy vlozheniya”, Math. Balkanica, 2 (1972), 183–198 | Zbl

[4] M. K. Potapov, “O priblizhenii “uglom””, Trudy konferentsii po konstruktivnoi teorii funktsii, Budapesht, 1972, 371–399 | Zbl

[5] K. V. Runovskii, “O semeistvakh lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 184:2 (1993), 33–42 | MR | Zbl

[6] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[7] K. V. Runovskii, Nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1990

[8] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI | Zbl

[9] M. K. Potapov, B. V. Simonov, “Svoistva smeshannogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 6, 31–40 | MR | Zbl

[10] K. Runovski, H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Birkhäuser, Cham, 2014, 269–298 | MR | Zbl

[11] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010

[12] R. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[13] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–227 | MR | Zbl

[14] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, 2011

[15] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives”, Z. Anal. Anwend., 34:1 (2015), 109–125 | MR | Zbl