Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 421-432
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of general mixed modulus of smoothness of periodic functions of several variables in the spaces $L_p$ is introduced. The proposed construction is, on the one hand, a natural generalization of the general modulus of smoothness in the one-dimensional case, which was introduced in a paper of the first author and in which the coefficients of the values of a given function at the nodes of a uniform lattice are the Fourier coefficients of a $2\pi$-periodic function called the generator of the modulus; while, on the other hand, this construction is a generalization of classical mixed moduli of smoothness and of mixed moduli of arbitrary positive order. For the modulus introduced in the paper, in the case $1 \le p \le +\infty$, the direct and inverse theorems on the approximation by the “angle” of trigonometric polynomials are proved. The previous estimates of such type are obtained as direct consequences of general results, new mixed moduli are constructed, and a universal structural description of classes of functions whose best approximation by “angle” have a certain order of convergence to zero is given.
Keywords:
generalized modulus of smoothness, mixed modulus of smoothness, approximation by “angle,” direct and inverse approximation theory.
@article{MZM_2016_100_3_a8,
author = {K. V. Runovskii and N. V. Omel'chenko},
title = {Mixed {Generalized} {Modulus} of {Smoothness} and {Approximation} by the {``Angle''} of {Trigonometric} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {421--432},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/}
}
TY - JOUR AU - K. V. Runovskii AU - N. V. Omel'chenko TI - Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials JO - Matematičeskie zametki PY - 2016 SP - 421 EP - 432 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/ LA - ru ID - MZM_2016_100_3_a8 ER -
%0 Journal Article %A K. V. Runovskii %A N. V. Omel'chenko %T Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials %J Matematičeskie zametki %D 2016 %P 421-432 %V 100 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/ %G ru %F MZM_2016_100_3_a8
K. V. Runovskii; N. V. Omel'chenko. Mixed Generalized Modulus of Smoothness and Approximation by the ``Angle'' of Trigonometric Polynomials. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 421-432. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a8/