On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 375-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with conditions under which the Green function of a multipoint boundary-value problem for fourth-order equations describing small strains of a rod fastened to a solid elastic basement and additionally fixed by “concentrated” elastic supports at separate points has the oscillation property. It is shown that the condition that the Green function is positive is necessary and sufficient for the Green function to have the oscillation property.
Keywords: fourth-order boundary-value problem, Green function, the oscillation property, oscillation theorem, sign regularity.
@article{MZM_2016_100_3_a4,
     author = {R. Ch. Kulaev},
     title = {On the {Oscillation} {Property} of {Green's} {Function} of a {Fourth-Order} {Discontinuous} {Boundary-Value} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {375--387},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a4/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem
JO  - Matematičeskie zametki
PY  - 2016
SP  - 375
EP  - 387
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a4/
LA  - ru
ID  - MZM_2016_100_3_a4
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem
%J Matematičeskie zametki
%D 2016
%P 375-387
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a4/
%G ru
%F MZM_2016_100_3_a4
R. Ch. Kulaev. On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 375-387. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a4/

[1] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl

[2] O. D. Kellogg, “Orthogonal function sets arising from integral equations”, Amer. J. Math, 40:2 (1918), 145–154 | DOI | MR | Zbl

[3] O. D. Kellogg, “Interpolation properties of orthogonal sets of solutions of differential equations”, Amer. J. Math, 40:3 (1918), 225–234 | DOI

[4] P. D. Kalafati, “O funktsii Grina obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 26:6 (1940), 535–539 | Zbl

[5] J. M. Karon, “The sihn-regularity propeties of a class of Green's functions for ordinary differential equations”, J. Differential Equations, 6:3 (1969), 484–502 | DOI | MR | Zbl

[6] S. Karlin, “Total positivity, interpolations by Splines and Green's functions for ordinary differential equations”, J. Approx. Theory, 4:1 (1971), 91–112 | DOI | MR | Zbl

[7] A. Yu. Levin, G. D. Stepanov, “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka. I”, Sib. matem. zhurn., 17:3 (1976), 606–626 | MR | Zbl

[8] A. V. Borovskikh, Yu. V. Pokornyi, “Sistemy Chebysheva–Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3 (297) (1994), 3–42 | MR | Zbl

[9] Yu. V. Pokornyi, “O znakoregulyarnykh funktsiyakh Grina nekotorykh neklassicheskikh zadach”, UMN, 36:4 (1981), 205–206

[10] V. Ya. Derr, “K obobschennoi zadache Valle Pussena”, Differents. uravneniya, 23:11 (1987), 1861–1872 | MR | Zbl

[11] A. L. Teptin, “K voprosu ob ostsillyatsionnosti spektra mnogotochechnoi kraevoi zadachi”, Izv. vuzov. Matem., 1999, no. 4, 44–53 | MR | Zbl

[12] Yu. V. Pokornyi, K. P. Lazarev, “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Differents. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[13] R. Ch. Kulaev, “Ob ostsillyatsionnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Differents. uravneniya, 51:4 (2015), 445–458 | DOI

[14] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[15] Zh. Ben Amara, A. A. Vladimirov, “Ob ostsillyatsii sobstvennykh funktsii zadachi chetvertogo poryadka so spektralnym parametrom v granichnom uslovii”, Fundament. i prikl. matem., 12:4 (2006), 41–52 | MR | Zbl

[16] Zh. Ben Amara, A. A. Vladimirov, A. A. Shkalikov, “Spektralnye svoistva odnogo lineinogo puchka differentsialnykh operatorov chetvertogo poryadka”, Matem. zametki, 94:1 (2013), 55–67 | DOI | Zbl

[17] A. V. Borovskikh, “Usloviya znakoregulyarnosti razryvnykh kraevykh zadach”, Matem. zametki, 74:5 (2003), 643–655 | DOI | MR | Zbl

[18] R. Ch. Kulaev, “Kriterii polozhitelnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Differents. uravneniya, 51:2 (2015), 161–173 | DOI | Zbl

[19] R. Ch. Kulaev, “Usloviya ostsillyatsionnosti funktsii Grina razryvnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Vladikavk. matem. zhurn., 17:1 (2015), 47–59

[20] Yu. V. Pokornyi, “Integral Stiltesa i proizvodnye po mere v obyknovennykh differentsialnykh uravneniyakh”, DAN, 364:2 (1999), 167–169 | MR | Zbl

[21] Yu. V. Pokornyi,M. B. Zvereva, S. A. Shabrov, “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1 (379) (2008), 111–154 | DOI | MR | Zbl

[22] Yu. V. Pokornyi, Zh. I. Bakhtina, M. B. Zvereva, S. A. Shabrov, Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009 | Zbl

[23] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[24] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl