Regular Growth of Various Characteristics of Entire Functions of Order Zero
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 363-374
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the relationship between the strongly regular growth of an entire function $f$ of order zero, the existence of the angular density of its zeros, the behavior of the Fourier coefficients of the logarithm of $f$, and the regular growth of the logarithm of the modulus and the argument of $f$ in the $L^{p}[0,2\pi]$-metric, $p\ge1$.
Keywords:
entire function, angular density, order of a function.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{MZM_2016_100_3_a3,
author = {N. V. Zabolotskii and O. V. Kostjuk},
title = {Regular {Growth} of {Various} {Characteristics} of {Entire} {Functions} of {Order} {Zero}},
journal = {Matemati\v{c}eskie zametki},
pages = {363--374},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a3/}
}
TY - JOUR AU - N. V. Zabolotskii AU - O. V. Kostjuk TI - Regular Growth of Various Characteristics of Entire Functions of Order Zero JO - Matematičeskie zametki PY - 2016 SP - 363 EP - 374 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a3/ LA - ru ID - MZM_2016_100_3_a3 ER -
N. V. Zabolotskii; O. V. Kostjuk. Regular Growth of Various Characteristics of Entire Functions of Order Zero. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 363-374. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a3/