On Coincidence Points of Multivalued Vector Mappings of Metric Spaces
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 344-362
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of metric regularity can be extended to multivalued mappings acting in the products of metric spaces. A vector analog of Arutyunov's coincidence-point theorem for two multivalued mappings is proved. Statements on the existence and estimates of solutions of systems of inclusions of special form occurring in the multiple fixed-point problem are obtained. In particular, these results imply some well-known double-point theorems.
Keywords:
vector-metrically regular multivalued mapping, junction points, multiple fixed points.
@article{MZM_2016_100_3_a2,
author = {E. S. Zhukovskii},
title = {On {Coincidence} {Points} of {Multivalued} {Vector} {Mappings} of {Metric} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {344--362},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a2/}
}
E. S. Zhukovskii. On Coincidence Points of Multivalued Vector Mappings of Metric Spaces. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 344-362. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a2/