Automorphisms of Singular Cubic Threefolds and the Cremona Group
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 461-464
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
variety, fibration
Mots-clés : group, hypersurface.
Mots-clés : group, hypersurface.
@article{MZM_2016_100_3_a13,
author = {A. Avilov},
title = {Automorphisms of {Singular} {Cubic} {Threefolds} and the {Cremona} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {461--464},
year = {2016},
volume = {100},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a13/}
}
A. Avilov. Automorphisms of Singular Cubic Threefolds and the Cremona Group. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 461-464. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a13/
[1] I. V. Dolgachev, V. A. Iskovskikh, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, Vol. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | MR | Zbl
[2] Yu. Prokhorov, Adv. Geom., 13:3 (2013), 389–418 | MR | Zbl
[3] Yu. G. Prokhorov, Izv. RAN. Ser. matem., 79:4 (2015), 159–174 | DOI | MR | Zbl
[4] A. A. Avilov, Matem. sb., 207:3 (2016), 3–18 | DOI
[5] C. H. Clemens, P. A. Griffiths, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl
[6] H. Finkelnberg, J. Werner, Ind. Math. (Proc.), 92:2 (1989), 185–198 | DOI | MR | Zbl
[7] N. I. Shepherd-Barron, The Hasse Principle for 9-Nodal Cubic Threefolds, arXiv: 1210.5178
[8] B. Teissier, Astérisque, 7-8 (1973), 285–362