Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_3_a10, author = {S. E. Stepanov and I. I. Tsyganok}, title = {Harmonic {Transforms} of {Complete} {Riemannian} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {441--449}, publisher = {mathdoc}, volume = {100}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a10/} }
S. E. Stepanov; I. I. Tsyganok. Harmonic Transforms of Complete Riemannian Manifolds. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a10/
[1] Harmonic Maps and Differential Geometry, eds. E. Loubeau, S. Montaldo, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl
[2] J. Vilms, “Totally geodesic maps”, J. Differential Geometry, 4:1 (1970), 73–79 | MR | Zbl
[3] J. Eells Jr., J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86:1 (1964), 109–160 | DOI | MR | Zbl
[4] K. Yano, S. Ishihara, “Harmonic and relatively affine mappings”, J. Differential Geometry, 10:4 (1975), 501–509 | MR | Zbl
[5] R. Schoen, S. T. Yau, “Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature”, Comment. Math. Helv., 51:1 (1976), 333–341 | DOI | MR | Zbl
[6] A. Atsuji, “Parabolicity, the divergence theorem for $\delta$-subharmonic functions and applications to the Liouville theorems for harmonic maps”, Tohoku Math. J. (2), 57:3 (2005), 353–373 | DOI | MR | Zbl
[7] S. Y. Cheng, “Liouville theorem for harmonic maps”, Geometry of the Laplace Operator, Proc. Symp. Pure Math., 36, Amer. Math. Soc., Providence, RI, 1980, 147–151 | MR | Zbl
[8] S. Pigola, M. Rigoli, A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Progr. Math., 266, Birkhäuser Verlag, Berlin, 2008 | MR | Zbl
[9] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl
[10] A. Besse, Mnogoobraziya Enshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl
[11] S. E. Stepanov, I. G. Shandra, “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. Geom., 24:3 (2003), 291–299 | DOI | MR | Zbl
[12] B. Chow, D. Knopf, The Ricci Flow: An Introduction, Math. Surveys Monogr., 110, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[13] B. Chow, P. Lu, L. Ni, Hamilton's Ricci Flow, Grad. Stud. in Math., 77, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[14] I. Davidov, A. G. Sergeev, “Tvistornye prostranstva i garmonicheskie otobrazheniya”, UMN, 48:3 (291) (1993), 3–96 | MR | Zbl
[15] D. M. DeTurck, N. Koiso, “Uniqueness and non-existence of metrics with prescribed Ricci curvature”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:5 (1984), 351–359 | MR | Zbl
[16] S. E. Stepanov, I. G. Shandra, “Garmonicheskie diffeomorfizmy mnogoobrazii”, Algebra i analiz, 16:2 (2004), 154–171 | MR | Zbl
[17] N. S. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl
[18] A. Grigor'yan, Heat Kernel and Analysis on Manifolds, AMS/IP Stud. in Adv. Math., 47, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl
[19] The Ubiquitous Heat Kernel, Contemp. Math., 398, eds. J. Jorgenson, L. Walling, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[20] L. W. Tu, An Introduction to Manifolds, Universitext, Springer, New York, 2008 | MR | Zbl
[21] C. Udrişte, Geometric Dynamics, Math. Appl., 513, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[22] S. E. Stepanov, I. G. Shandra, “Novye kharakteristiki infinitezimalnoi izometrii i trivialnogo solitona Richchi”, Matem. zametki, 92:3 (2012), 459–462 | DOI | MR | Zbl
[23] Sh. Kobayasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | Zbl
[24] D. Gromol, V. Klingenberg, V. Meier, Rimanova geometriya v tselom, Mir, M., 1971 | Zbl
[25] M. Eminenti, G. La Nave, C. Mantegazza, “Ricci solitons: the equation point of view”, Manuscripta Math., 127:3 (2008), 345–367 | DOI | MR | Zbl
[26] S. E. Stepanov, V. N. Shelepova, “Zametka o solitonakh Richchi”, Matem. zametki, 86:3 (2009), 474–477 | DOI | MR | Zbl
[27] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl
[28] M. Berger, D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differential Geometry, 3 (1969), 379–392 | MR | Zbl
[29] S.-T. Yau, “Some function-theoretic properties of complete Riemannian mani-fold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670 | DOI | MR | Zbl
[30] P. H. Berard, “From vanishing theorems to estimating theorems: the Bochner technique revisited”, Bull. Amer. Math. Soc. (N.S.), 19:2 (1988), 371–406 | DOI | MR | Zbl