Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_3_a0, author = {P. A. Andrianov and O. L. Vinogradov}, title = {On the {Constant} and {Step} in {Jackson's} {Inequality} for {Best} {Approximations} by {Trigonometric} {Polynomials} and by {Haar} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--330}, publisher = {mathdoc}, volume = {100}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a0/} }
TY - JOUR AU - P. A. Andrianov AU - O. L. Vinogradov TI - On the Constant and Step in Jackson's Inequality for Best Approximations by Trigonometric Polynomials and by Haar Polynomials JO - Matematičeskie zametki PY - 2016 SP - 323 EP - 330 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a0/ LA - ru ID - MZM_2016_100_3_a0 ER -
%0 Journal Article %A P. A. Andrianov %A O. L. Vinogradov %T On the Constant and Step in Jackson's Inequality for Best Approximations by Trigonometric Polynomials and by Haar Polynomials %J Matematičeskie zametki %D 2016 %P 323-330 %V 100 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a0/ %G ru %F MZM_2016_100_3_a0
P. A. Andrianov; O. L. Vinogradov. On the Constant and Step in Jackson's Inequality for Best Approximations by Trigonometric Polynomials and by Haar Polynomials. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a0/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[2] P. Andrianov, M. Skopina, “On Jackson-type inequalities associated with separable Haar wavelets”, Int. J. Wavelets Multiresolut Inf. Process., 14:3 (2016), 1650005 | DOI | Zbl
[3] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl
[4] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Function Spaces, North-Holland, Amsterdam, 1981, 25–43 | MR | Zbl
[5] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl
[6] O. L. Vinogradov, V. V. Zhuk, “Tochnye neravenstva tipa Dzheksona dlya differentsiruemykh funktsii i minimizatsiya shaga modulya nepreryvnosti”, Tr. Sankt-Peterburgskogo matem. ob-va, 8 (2000), 29–51 | MR
[7] O. L. Vinogradov, V. V. Zhuk, “Otsenki otkloneniya srednego znacheniya funktsii cherez moduli nepreryvnosti ee nechetnykh proizvodnykh s naimenshimi konstantoi i shagom”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 1. Matem., mekh., astron., 2000, no. 3, 22–29 | Zbl
[8] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl
[9] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl