Derived Sections, Factorization Algebras, and Deligne Conjecture
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 291-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: homotopical algebra, model category, Reedy model structures, Grothendieck fibration, factorization algebra, operator category, Deligne conjecture.
@article{MZM_2016_100_2_a9,
     author = {\`E. R. Balzin},
     title = {Derived {Sections,} {Factorization} {Algebras,} and {Deligne} {Conjecture}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--295},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a9/}
}
TY  - JOUR
AU  - È. R. Balzin
TI  - Derived Sections, Factorization Algebras, and Deligne Conjecture
JO  - Matematičeskie zametki
PY  - 2016
SP  - 291
EP  - 295
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a9/
LA  - ru
ID  - MZM_2016_100_2_a9
ER  - 
%0 Journal Article
%A È. R. Balzin
%T Derived Sections, Factorization Algebras, and Deligne Conjecture
%J Matematičeskie zametki
%D 2016
%P 291-295
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a9/
%G ru
%F MZM_2016_100_2_a9
È. R. Balzin. Derived Sections, Factorization Algebras, and Deligne Conjecture. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 291-295. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a9/

[1] J. F. Adams, Infinite Loop Spaces, Ann. of Math. Stud., 90, Princeton Univ. Press, Princeton, NJ, 1978 | MR | Zbl

[2] J. P. May, The Geometry of Iterated Loop Spaces, Lectures Notes in Math., 271, Springer-Verlag, Berlin, 1972 | DOI | MR | Zbl

[3] G. Segal, Categories and Cohomology Theories, Topology, 13, 1974 | MR | Zbl

[4] S. Mac Lane, Categories for The Working Mathematician, Graduate Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl

[5] T. Leinster, Higher Operads, Higher Categories, London Math. Soc. Lecture Note Ser., 298, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[6] D. Quillen, Higher $K$-Theories, Lecture Notes in Math., 341, Springer-Verlag, Berlin, 1973, 85–147 | DOI | MR | Zbl

[7] W. G. Dwyer, Ph. S. Hirschhorn, D. M. Kan, J. H. Smith, Homotopy Limit Functors on Model Categories and Homotopical Categories, Math. Surveys Monogr., 113, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[8] M. Hovey, Model Categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[9] J. E. McClure, J. H. Smith, Recent Progress in Homotopy Theory, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002, 153–193. | MR | Zbl

[10] Dmitry E. Tamarkin, Another Proof of M. Kontsevich Formality Theorem, 1998, arXiv: math.QA/9803025

[11] K. Costello, Adv. Math., 210:1 (2007), 165–214 | MR | Zbl

[12] C. Barwick, From Operator Categories to Topological Operads, 2013, arXiv: 1302.5756

[13] Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[14] J. Lurie, Higher Algebra, 2016 http://www.math.harvard.edu/~lurie/papers/HA.pdf

[15] E. Balzin, Derived Sections of Grothendieck Fibrations and the Problems of Homotopical Algebra, 2015, arXiv: 1410.3387

[16] E. Balzin, UMN, 69:5 (419) (2014), 159–160 | DOI | MR | Zbl

[17] A. K. Bousfield, D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin, 1972 | DOI | MR | Zbl

[18] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin, 1967 | DOI | MR | Zbl

[19] T. Woolf, The Fundamental Category of a Stratified Space, 2013, arXiv: 0811.2580

[20] A. Beilinson, V. Drinfeld, Chiral Algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[21] M. Kontsevich, Y. Soibelman, Homological Mirror Symmetry, Lecture Notes in Phys., 757, Springer-Verlag, Berlin, 2008, 1–67 | DOI

[22] D. Kaledin, Homological Methods in Non-commutative Geometry, Lecture Notes, University of Tokyo, Tokyo, 2008

[23] D. Kaledin, Non-Commutative Geometry from the Homological Point of View, Lecture Notes, KIAS, Seoul, 2009