On Lower and on Sharp Asymptotic Estimates of Solutions of Emden--Fowler-Type Equations
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 279-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

Emden–Fowler-type equations of arbitrary order are considered. Lower and sharp asymptotic estimates of the nonoscillating continuable solutions of these equations are established.
Keywords: continuable and noncontinuable solutions, nonoscillating solution, asymptotic estimate, Emden–Fowler-type equation.
@article{MZM_2016_100_2_a7,
     author = {V. S. Samovol},
     title = {On {Lower} and on {Sharp} {Asymptotic} {Estimates} of {Solutions} of {Emden--Fowler-Type} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a7/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - On Lower and on Sharp Asymptotic Estimates of Solutions of Emden--Fowler-Type Equations
JO  - Matematičeskie zametki
PY  - 2016
SP  - 279
EP  - 286
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a7/
LA  - ru
ID  - MZM_2016_100_2_a7
ER  - 
%0 Journal Article
%A V. S. Samovol
%T On Lower and on Sharp Asymptotic Estimates of Solutions of Emden--Fowler-Type Equations
%J Matematičeskie zametki
%D 2016
%P 279-286
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a7/
%G ru
%F MZM_2016_100_2_a7
V. S. Samovol. On Lower and on Sharp Asymptotic Estimates of Solutions of Emden--Fowler-Type Equations. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 279-286. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a7/

[1] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954 | Zbl

[2] V. A. Kondratev, V. S. Samovol, “O nekotorykh asimptoticheskikh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Differents. uravneniya, 17:4 (1981), 749–750

[3] V. S. Samovol, “Ob asimptoticheskikh otsenkakh reshenii uravnenii tipa Emdena–Faulera”, Matem. zametki, 97:1 (2015), 103–114 | DOI | MR | Zbl

[4] I. T. Kiguradze, T. F. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | MR | Zbl

[5] V. S. Samovol, “O resheniyakh uravnenii tipa Emdena–Faulera”, Matem. zametki, 95:5 (2014), 775–789 | DOI | Zbl

[6] I. T. Kiguradze, “O koleblemosti reshenii uravneniya $\frac{d^mu}{dt^m}+a(t)|u|^n\operatorname{sign}u=0$”, Matem. sb., 65 (107):2 (1964), 172–187 | MR | Zbl

[7] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, M., Nauka, 1998 | MR | Zbl

[8] A. D. Bryuno, “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, UMN, 59:3 (357) (2004), 31–80 | DOI | MR | Zbl