Spectral Properties of the Schr\"odinger Operator with $\delta$-Distribution
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 256-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the one-dimensional Schrödinger operator with $\delta$-interactions, two-sided estimates of the distribution function of the eigenvalues and a criterion for the discreteness of the spectrum in terms of the Otelbaev function are obtained. A criterion for the resolvent of the Schrödinger operator to belong to the class $\mathfrak S_p$ is established.
Keywords: Schrödinger operator, semiboundedness below of the distribution functions of eigenvalues, discreteness of the spectrum of the Schrödinger operator, point interactions.
@article{MZM_2016_100_2_a5,
     author = {Medet Nursultanov},
     title = {Spectral {Properties} of the {Schr\"odinger} {Operator} with $\delta${-Distribution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {256--269},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a5/}
}
TY  - JOUR
AU  - Medet Nursultanov
TI  - Spectral Properties of the Schr\"odinger Operator with $\delta$-Distribution
JO  - Matematičeskie zametki
PY  - 2016
SP  - 256
EP  - 269
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a5/
LA  - ru
ID  - MZM_2016_100_2_a5
ER  - 
%0 Journal Article
%A Medet Nursultanov
%T Spectral Properties of the Schr\"odinger Operator with $\delta$-Distribution
%J Matematičeskie zametki
%D 2016
%P 256-269
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a5/
%G ru
%F MZM_2016_100_2_a5
Medet Nursultanov. Spectral Properties of the Schr\"odinger Operator with $\delta$-Distribution. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 256-269. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a5/

[1] E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”, Ric. Sci. Progr. Tecn. Econom. Naz., 2 (1936), 13–52 | Zbl

[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl

[3] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, DAN SSSR, 137, no. 5, 1011–1014 | MR | Zbl

[4] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, “Point interactions in two dimensions: basic properties, approximations and applications in solid state physics”, J. Reine Angew. Math., 380 (1987), 87–107 | MR | Zbl

[5] V. A. Mikhailets, “Kriterii diskretnosti spektra odnomernogo operatora Shredingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 28:4 (1994), 85–87 | MR | Zbl

[6] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[7] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212 | MR | Zbl

[8] S. Albeverio, V. A. Greyler, “The band structure of the general periodic Schrödinger operator with point interaction”, Comm. Math. Phys., 210:1 (2000), 29–48 | DOI | MR | Zbl

[9] S. Albeverio, A. Kostenko, M. Malamud, “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set”, J. Math. Phys., 51:10 (2010), 102102 | MR | Zbl

[10] A. S. Kostenko, M. M. Malamud, “Ob odnomernom operatore Shredingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[11] A. S. Kostenko, M. M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set”, J. Differential Equations, 249:2 (2010), 253–304 | DOI | MR | Zbl

[12] R. S. Ismagilov, A. G. Kostyuchenko, “Ob asimptotike spektra operatora Shturma–Liuvillya s tochechnym vzaimodeistviem”, Funkts. analiz i ego pril., 44:4 (2010), 14–20 | DOI | MR | Zbl

[13] A. Kostenko, M. Malamud, “1-D Schrödinger operators with local point interactions: a review”, Spectral Analysis, Differential Equations and Mathematical Physics, A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, Proc. Sympos. Pure Math., 87, Amer. Math. Soc., Providence, RI, 2013, 235–262 | MR | Zbl

[14] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359

[15] B. E. Kanguzhin, A. A. Aniyarov, “Korrektnye zadachi dlya operatora Laplasa v prokolotom kruge”, Matem. zametki, 89:6 (2011), 856–867 | DOI | MR | Zbl

[16] M. O. Otelbaev, “Otsenki sobstvennykh chisel singulyarnykh differentsialnykh operatorov”, Matem. zametki, 20:6 (1976), 859–867 | MR | Zbl

[17] M. O. Otelbaev, Otsenki spektra operatora Shturma–Liuvillya, Gylym, Alma-Ata, 1990

[18] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl