Approximation Properties of de la Vall\'ee-Poussin Means for Piecewise Smooth Functions
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 229-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The value of the deviation of a function $f(x)$ from its de la Vallée-Poussin means $V_m^n(f,x)$ with respect to the trigonometric system for classes of piecewise smooth $2\pi$-periodic functions is estimated.
Keywords: de la Vallée-Poussin means, trigonometric system, piecewise smooth function, approximation theory, approximation properties.
@article{MZM_2016_100_2_a3,
     author = {M. G. Magomed-Kasumov},
     title = {Approximation {Properties} of de la {Vall\'ee-Poussin} {Means} for {Piecewise} {Smooth} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {229--247},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a3/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Approximation Properties of de la Vall\'ee-Poussin Means for Piecewise Smooth Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 229
EP  - 247
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a3/
LA  - ru
ID  - MZM_2016_100_2_a3
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Approximation Properties of de la Vall\'ee-Poussin Means for Piecewise Smooth Functions
%J Matematičeskie zametki
%D 2016
%P 229-247
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a3/
%G ru
%F MZM_2016_100_2_a3
M. G. Magomed-Kasumov. Approximation Properties of de la Vall\'ee-Poussin Means for Piecewise Smooth Functions. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 229-247. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a3/

[1] S. M. Nikolskii, “O nekotorykh metodakh priblizheniya trigonometricheskimi summami”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 509–520 | MR | Zbl

[2] S. A. Telyakovskii, “Priblizhenie differentsiruemykh funktsii summami Valle Pussena”, Dokl. AN SSSR, 121 (1958), 426–429 | Zbl

[3] A. V. Efimov, “O priblizhenii periodicheskikh funktsii summami Valle-Pussena”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 737–770 | MR | Zbl

[4] A. V. Efimov, “O priblizhenii periodicheskikh funktsii summami Valle Pussena. II”, Izv. AN SSSR. Ser. matem., 24:3 (1960), 431–468 | MR | Zbl

[5] A. A. Zakharov, “Ob otsenke ukloneniya nepreryvnykh periodicheskikh funktsii ot summ Valle Pussena”, Matem. zametki, 3:1 (1968), 77–84 | MR | Zbl

[6] Ie. Yu. Ovsii, A. S. Serdyuk, Approximation of Continuous Periodic Functions by de la Vallee Poussin Sums, arXiv: 1211.5424

[7] S. P. Baiborodov, “Priblizhenie funktsii summami Valle Pussena”, Matem. zametki, 27:1 (1980), 33–48 | MR | Zbl

[8] I. I. Sharapudinov, “Approksimativnye svoistva srednikh Valle Pussena na klassakh tipa Soboleva s peremennym pokazatelem”, Vestn. Dagestansk. nauchn. tsentra RAN, 45 (2012), 5–13

[9] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L^{p(x)}_{2\pi}$ srednimi Valle–Pussena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (1) (2013), 45–49 | Zbl

[10] M. G. Magomed-Kasumov, “Approksimativnye svoistva klassicheskikh srednikh Valle-Pussena dlya kusochno gladkikh funktsii”, Vestn. Dagestansk. nauchn. tsentra RAN, 54 (2014), 5–12

[11] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl | Zbl

[12] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2001