Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 303-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: extremal trigonometric polynomials, the extremal problems on the minimum of the constant term of trigonometric polynomial, the asymptotic estimate.
@article{MZM_2016_100_2_a11,
     author = {A. S. Belov},
     title = {Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {303--307},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a11/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials
JO  - Matematičeskie zametki
PY  - 2016
SP  - 303
EP  - 307
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a11/
LA  - ru
ID  - MZM_2016_100_2_a11
ER  - 
%0 Journal Article
%A A. S. Belov
%T Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials
%J Matematičeskie zametki
%D 2016
%P 303-307
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a11/
%G ru
%F MZM_2016_100_2_a11
A. S. Belov. Bound of remainder term of asymptotic solution one extremal problem connected with nonnegative trigonometric polynomials. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 303-307. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a11/

[1] A. M. Odlyzko, J. London Math. Soc. (2), 26:3 (1982), 412–420 | DOI | MR | Zbl

[2] A. S. Belov, Trigonometricheskie ryady i polinomy s neotpitsatelnymi chastnymi summami, Dis. $\dots$ dokt. fiz.-matem. nauk, MI RAN, M., 2003

[3] S. V. Konyagin, Izv. AN SSSR. Ser. matem., 45:2 (1981), 243–265 | MR | Zbl

[4] O. C. McGehee, L. Pigno, B. Smith, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR | Zbl

[5] A. S. Belov, Sovpemennye ppoblemy teopii funktsii i ikh ppilozheniya, Tezisy dokladov 12-i Saratovskoi zimnei shkoly (Saratov, 27 yanvarya–3 fevpalya 2004 g.), Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 19–21

[6] A. S. Belov, Fundament. i prikl. matem., 18:5 (2013), 27–67 | MR

[7] A. S. Belov, Sovremennye problemy matematiki, mekhaniki, informatiki, Materialy mezhdunarodnoi nauchnoi konferentsii (Tula, 15–19 sentyabrya 2014 g.), Izd-vo TulGU, Tula, 2014, 12–16

[8] A. S. Belov, Izv. RAN. Ser. matem., 57:6 (1993), 212–226 | MR | Zbl

[9] A. S. Belov, Vestn. Ivanovsk. gos. un-ta. Sep. “Biolog. Khim. Fiz. Matem.”, 2011, no. 2, 104–114

[10] A. S. Belov, Tr. IMM UrO RAN, 17, no. 3, 2011, 105–121