Intersections of Shifts of Multiplicative Subgroups
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 185-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Stepanov's method, we obtain an upper bound for the cardinality of the intersection of additive shifts of several multiplicative subgroups of a finite field. The resulting inequality is applied to a question dealing with the additive decomposability of subgroups.
Keywords: multiplicative subgroup, finite field, Stepanov's method, sum of subgroups.
@article{MZM_2016_100_2_a0,
     author = {I. V. Vyugin and E. V. Solodkova and I. D. Shkredov},
     title = {Intersections of {Shifts} of {Multiplicative} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {185--195},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a0/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - E. V. Solodkova
AU  - I. D. Shkredov
TI  - Intersections of Shifts of Multiplicative Subgroups
JO  - Matematičeskie zametki
PY  - 2016
SP  - 185
EP  - 195
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a0/
LA  - ru
ID  - MZM_2016_100_2_a0
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A E. V. Solodkova
%A I. D. Shkredov
%T Intersections of Shifts of Multiplicative Subgroups
%J Matematičeskie zametki
%D 2016
%P 185-195
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a0/
%G ru
%F MZM_2016_100_2_a0
I. V. Vyugin; E. V. Solodkova; I. D. Shkredov. Intersections of Shifts of Multiplicative Subgroups. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 185-195. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a0/

[1] A. Garcia, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl

[2] D. R. Heath-Brown, S. V. Konyagin, “New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl

[3] S. A. Stepanov, “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1171–1181 | MR | Zbl

[4] I. V. Vyugin, I. D. Shkredov, “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl

[5] D. A. Mitkin, “Otsenka summarnogo chisla ratsionalnykh tochek nekotorogo mnozhestva krivykh v prostom konechnom pole”, Chebyshevskii sb., 4:4 (2003), 94–102 | MR | Zbl

[6] S. V. Konyagin, “Otsenki dlya trigonometricheskikh summ na podgruppy i dlya gaussovykh summ”, IV internatsionalnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, Aktualnye problemy. Chast 3 (Tula, 2001), Izd-vo Mosk. un-ta, M., 2002, 86–114

[7] F. K. Schmidt, “Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern”, Math. Z., 45:1 (1939), 62–74 | DOI | MR | Zbl

[8] A. Garcia, J. F. Voloch, “Wronskians and linear independence in fields of prime characteristic”, Manuscripta Math., 59:4 (1987), 457–469 | DOI | MR | Zbl

[9] C. Dartyge, A. Sárközy, “On additive decompositions of the set of primitive roots modulo $p$”, Monatsh. Math., 169:3-4 (2013), 317–328 | DOI | MR | Zbl

[10] A. Sárközy, “On additive decompositions of the set of the quadratic residues modulo $p$”, Acta Arith., 155 (2012), 41–51 | DOI | MR | Zbl

[11] I. E. Shparlinski, “Additive decompositions of subgroups of finite fields”, SIAM J. Discrete Math., 27:4 (2013), 1870–1879 | DOI | MR | Zbl