Domination Problem in Banach Lattices
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 78-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to present a survey of the main results concerning the domination problem for operators in Banach lattices, to lay down a general approach to the study of the problem, and to indicate several directions for further investigations.
Keywords: Banach lattice, operator, projection.
Mots-clés : domination
@article{MZM_2016_100_1_a5,
     author = {A. G. Kusraev},
     title = {Domination {Problem} in {Banach} {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {78--93},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a5/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Domination Problem in Banach Lattices
JO  - Matematičeskie zametki
PY  - 2016
SP  - 78
EP  - 93
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a5/
LA  - ru
ID  - MZM_2016_100_1_a5
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Domination Problem in Banach Lattices
%J Matematičeskie zametki
%D 2016
%P 78-93
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a5/
%G ru
%F MZM_2016_100_1_a5
A. G. Kusraev. Domination Problem in Banach Lattices. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a5/

[1] Y. A. Abramovich, C. D. Aliprantis, “Positive operators”, Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, 85–122 | MR | Zbl

[2] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991 | MR

[3] H.-U. Schwarz, Banach Lattices and Operators, Teubner-Texte zur Mathematik, 71, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984 | MR

[4] L. Weis, “Banach lattices with the subsequence splitting property”, Proc. Amer. Math. Soc., 105 (1989), 87–96 | DOI | MR | Zbl

[5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR

[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Stud. in Adv. Math., 43, Cambridge Univ. Press, Cambridge, 1995 | MR

[7] Y. A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, Amer. Math. Soc., Providence, RI, 2002 | MR

[8] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, Orlando, FL, 1985 | MR

[9] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, Berlin, 1974 | MR | Zbl

[10] P. G. Dodds, D. H. Fremlin, “Compact operators in Banach lattices”, Israel J. Math., 34:4 (1979), 287–320 | DOI | MR | Zbl

[11] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[12] J. Flores, C. Ruiz, “Domination by a positive Banach–Saks operator”, Studia Math., 173:2 (2006), 185–192 | MR | Zbl

[13] J. Flores, P. Tradacete, “Factorization and domination of positive Banach–Saks operator”, Studia Math., 189:1 (2008), 91–101 | MR | Zbl

[14] T. Kato, “Perturbation theory for nullity deficiency and other quantities of linear operators”, J. Anal. Math., 6:1 (1958), 261–322 | DOI | MR

[15] F. L. Hernández, B. Rodríguez-Salinas, “On $l_p$ complemented copies in Orlicz spaces. II”, Israel J. Math., 68:1 (1989), 27–55 | DOI | MR | Zbl

[16] J. Flores, F. L. Hernández, P. Tradacete, “Domination problems for strictly singular operators and other related classes”, Positivity, 15:4 (2011), 595–616 | DOI | MR | Zbl

[17] O. I. Reinov, “Operatory tipa RN v banakhovykh reshetkakh”, Dokl. AN SSSR, 220:3 (1975), 528–531 | MR | Zbl

[18] O. I. Reinov, “Operatory tipa RN i analiticheskoe predstavlenie lineinykh operatorov”, Teoriya operatorov v funktsionalnykh prostranstvakh, Nauka, Novosibirsk, 1977, 283–295 | MR

[19] W. Linde, “An operator ideal in connectopn with the Radon–Nikodým property in Banach spaces”, Math Nachr., 71 (1976), 65–73 | DOI | MR | Zbl

[20] C. C. A. Labuschagne, “A Dodds–Fremlin property for Asplund and Radon–Nikodým operators”, Positivity, 10:2 (2006), 391–407 | DOI | MR | Zbl

[21] A. Pietsch, “Absolut $p$-summirende Abbildungen in normierten Räumen”, Studia Math., 28 (1967), 333–353 | MR | Zbl

[22] A. M. Plichko, M. M. Popov, “Symmetric function spaces on atomless probability spaces”, Dissertationes Math. (Rozprawy Mat.), 306 (1990), 85 pp. | MR

[23] J. Bourgain, H. P. Rosenthal, “Applications of the theory of semi-embeddings to Banach space theory”, J. Funct. Anal., 52:2 (1983), 149–188 | DOI | MR | Zbl

[24] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, “Symmetric Structures in Banach Spaces”, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, RI, 1979 | DOI | MR

[25] O. V. Maslyuchenko, V. V. Mikhaylyuk, M. M. Popov, “A lattice approach to narrow operators”, Positivity, 13:3 (2009), 459–495 | DOI | MR | Zbl

[26] M. M. Popov, B. Randrianantoanina, Narrow Operators on Function Spaces and Vector Lattices, De Gruyter Stud. in Math., 45, Walter de Gruyter Co., Berlin, 2012 | MR

[27] A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl

[28] J. Flores, F. L. Hernández, P. Tradacete, “Powers of operators dominated by strictly singular operators”, Quart. J. Math. Oxford, 59:3 (2008), 321–334 | MR

[29] B. Aqzzouz, R. Nouira, L. Zraoula, “Compactness properties of operators dominated by $AM$-compact operators”, Proc. Amer. Math. Soc., 135:4 (2007), 1151–1157 | DOI | MR | Zbl

[30] A. W. Wickstead, “Converses for the Dodds–Fremlin and Kalton–Saab theorems”, Math. Proc. Cambridge Philos. Soc., 120:1 (1996), 175–179 | DOI | MR | Zbl

[31] A. W. Wickstead, “Positive compact operators: some loose ends”, Positivity, 4:3 (1996), 313–325 | MR

[32] J. Flores, F. L. Hernández, P. Tradacete, “Disjointly homogeneous Banach lattices and applications” (to appear)

[33] Yu. A. Abramovich, “Slabo kompaktnye mnozhestva v topologicheskikh $K$-prostranstvakh”, Teoriya funktsii, funkts. analiz i ikh prilozh., 15 (1972), 27–35

[34] A. W. Wickstead, “Extremal structure of cones of operators”, Quart. J. Math. Oxford Ser. (2), 32:2 (1981), 239–253 | DOI | MR | Zbl

[35] N. Kalton, P. Saab, “Ideal properties of regular operators between Banach lattices”, Illinois J. Math., 29:3 (1985), 382–400 | MR | Zbl

[36] J. Flores, F. L. Hernández, “Domination by positive disjointly strictly singular operators”, Proc. Amer. Math. Soc., 129 (2001), 1979–1986 | DOI | MR | Zbl

[37] A. G. Kusraev, “A direct proof of the domination theorem for Radon–Nikodým operators”, Math. Proc. R. Ir. Acad., 112A:1 (2012), 15–19 | MR | Zbl

[38] B. Aqzzouz, A. Elbour, “Erratum to: Compactness properties of operators dominated by $AM$-compact operators”, Proc. Amer. Math. Soc., 137:8 (2009), 2813–2815 | DOI | MR | Zbl

[39] C. Parazuelos, E. A. Sánches Pérez, P. Tradacete, “Maurey–Rosenthal factorization for $p$-summing operators and Dodds–Fremlin domination”, J. Operator Theory, 68:1 (2012), 205–222 | MR

[40] A. G. Kusraev, S. S. Kutateladze, “On the calculus of order bounded operators”, Positivity, 9:3 (2005), 327–339 | DOI | MR | Zbl

[41] S. S. Kutateladze, “Oskolki polozhitelnykh operatorov”, Sib. matem. zhurn., 30:5 (177) (1989), 111–119 | Zbl

[42] Yu. A. Abramovich, “In'ektivnye obolochki normirovannykh struktur”, Dokl. AN SSSR, 197:4 (1971), 743–745 | Zbl

[43] G. P. Akilov, E. V. Kolesnikov, A. G. Kusraev, “Poryadkovo nepreryvnoe rasshirenie polozhitelnogo operatora”, Sib. matem. zhurn., 29:5 (1988), 24–55 | MR

[44] de B. Pagter, “The components of a positive operator”, Indag. Math., 45:2 (1983), 229–241 | DOI | MR

[45] J. Diestel, J. J. Uhl Jr., Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977 | MR

[46] N. Dinculeanu, Vector Measures, Hochschulbücher für Mathematik, 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966 | MR

[47] C. Stegal, “The Radon–Nikodým property in conjugate Banach spaces”, Trans. Amer. Math. Soc., 206 (1975), 213–223 | DOI | MR | Zbl

[48] C. Stegal, “The Radon–Nikodým property in conjugate Banach spaces. II”, Trans. Amer. Math. Soc., 264 (1981), 507–519 | Zbl

[49] E. Asplund, “Fréchet differentiability of convex functions”, Acta Math., 121 (1968), 31–47 | DOI | MR | Zbl

[50] I. Namioka, R. R. Phelps, “Banach spaces which are Asplund spaces”, Duke Math. J., 42 (1975), 735–750 | DOI | MR | Zbl

[51] C. Stegall, “The duality between Asplund spaces and spaces with the Radon–Nikodym property”, Israel J. Math., 29:4 (1978), 408–412 | DOI | MR | Zbl

[52] Dzh. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl

[53] V. L. Levin, Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR

[54] S. Kwapień, “On Banach spaces containing $c_0$. A supplement to the paper by J. Hoffmann-Jørgensen "Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 187–188 | MR | Zbl

[55] A. V. Bukhvalov, “Geometricheskie svoistva banakhovykh prostaranstv izmerimykh vektor-funktsii”, Dokl. AN SSSR, 239:6 (1978), 1279–1282 | Zbl

[56] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, Berlin, 1999 | MR

[57] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag, Berlin, 2002 | MR

[58] D. H. Fremlin, “Tensor products of Banach lattices”, Math. Ann., 211:2 (1974), 87–106 | DOI | MR | Zbl

[59] G. Wittstock, “Eine Bemerkungüber Tensorprodukte von Banachverbände”, Arch. Math. (Basel), 25 (1974), 627–634 | DOI | MR | Zbl

[60] Z. A. Kusraeva, “O predstavlenii ortogonalno additivnykh polinomov”, Sib. matem. zhurn., 52:2 (2011), 315–325 | MR | Zbl

[61] Q. Bu, G. Buskes, “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388:2 (2012), 845–862 | DOI | MR | Zbl

[62] A. Ibort, P. Linares, J. G. Llavona, “A representation theorem for orthogonally additive polynomials on Riesz spaces”, Rev. Mat. Complut., 25:1 (2012), 21–30 | DOI | MR | Zbl

[63] Z. A. Kusraeva, “O kompaktnoi mazhoratsii odnorodnykh ortogonalno additivnykh polinomov”, Sib. matem. zhurn., 57:3 (2016)

[64] A. G. Kusraev, S. S. Kutateladze, Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | Zbl

[65] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36:2 (1965), 423–439 | DOI | MR | Zbl

[66] A. Hirshberg, R. M. Shortt, “A version of Strassen's theorem for positive vector-valued measures”, Proc. Amer. Math. Soc., 126:6 (1998), 1669–1671 | DOI | MR | Zbl

[67] J. Kawabe, “A type of Strassen's theorem for positive vector measures with values in dual spaces”, Proc. Amer. Math. Soc., 128:11 (2000), 3291–3300 | DOI | MR | Zbl

[68] S. S. Khurana, “Positive vector measures with given marginals”, Czechoslovak Math. J., 56 (131):2 (2006), 613–619 | DOI | MR | Zbl

[69] A. G. Kusraev, “O teoremakh Shtrassena v prostranstvakh Kantorovicha”, Issleovaniya po matematicheskomu analizu i differentsialnym uravneniyam, Vladikavkazskii nauchnyi tsentr, Vladikavkaz, 2011, 86–98

[70] A. G. Kusraev, Mazhoriruemye operatory, Nauka, M., 2003 | MR