Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study the mixed-norm Bergman–Morrey space $\mathscr A^{q;p,\lambda}(\mathbb D)$, mixed-norm Bergman–Morrey space of local type $\mathscr A_{\mathrm{loc}}^{q;p,\lambda}(\mathbb D)$, and mixed-norm Bergman–Morrey space of complementary type ${^{\complement}\!}\mathscr A^{q;p,\lambda}(\mathbb D)$ on the unit disk $\mathbb D$ in the complex plane $\mathbb C$. The mixed norm Lebesgue–Morrey space $\mathscr L^{q;p,\lambda}(\mathbb D)$ is defined by the requirement that the sequence of Morrey $L^{p,\lambda}(I)$-norms of the Fourier coefficients of a function $f$ belongs to $l^q$ ($I=(0,1)$). Then, $\mathscr A^{q;p,\lambda}(\mathbb D)$ is defined as the subspace of analytic functions in $\mathscr L^{q;p,\lambda}(\mathbb D)$. Two other spaces $\mathscr A_{\mathrm{loc}}^{q;p,\lambda}(\mathbb D)$ and ${^{\complement}\!}\mathscr A^{q;p,\lambda}(\mathbb D)$ are defined similarly by using the local Morrey $L_{\mathrm{loc}}^{p,\lambda}(I)$-norm and the complementary Morrey ${^{\complement}\!}L^{p,\lambda}(I)$-norm respectively. The introduced spaces inherit features of both Bergman and Morrey spaces and, therefore, we call them Bergman–Morrey-type spaces. We prove the boundedness of the Bergman projection and reveal some facts on equivalent description of these spaces.
Keywords: Bergman–Morrey-type space, mixed norm.
@article{MZM_2016_100_1_a3,
     author = {A. N. Karapetyants and S. G. Samko},
     title = {Mixed {Norm} {Bergman--Morrey-type} {Spaces} on the {Unit} {Disc}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/}
}
TY  - JOUR
AU  - A. N. Karapetyants
AU  - S. G. Samko
TI  - Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
JO  - Matematičeskie zametki
PY  - 2016
SP  - 47
EP  - 58
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/
LA  - ru
ID  - MZM_2016_100_1_a3
ER  - 
%0 Journal Article
%A A. N. Karapetyants
%A S. G. Samko
%T Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
%J Matematičeskie zametki
%D 2016
%P 47-58
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/
%G ru
%F MZM_2016_100_1_a3
A. N. Karapetyants; S. G. Samko. Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/

[1] S. Bergman, “Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I”, J. Reine Angew. Math., 169 (1932), 1–42 | Zbl

[2] M. M. Dzhrbashyan, “O kanonicheskom predstavlenii meromorfnykh v edinichnom kruge funktsii”, Dokl. AN Arm. SSR, 3:1 (1945), 3–9

[3] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. In-ta matematiki i mekhaniki AN ArmSSR, 1948, no. 2, Z–55

[4] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys Monogr., 5, Amer. Math. Soc., Providence, RI, 1970 | MR

[5] A. E. Djrbashian, F. A. Shamoian, Topics in the Theory of $A^p_\alpha$ Spaces, Teubner-Texte zur Mathematik, 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988 | MR | Zbl

[6] P. Duren, A. Schuster, Bergman Spaces, Math. Surveys Monogr., 100, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[7] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Graduate Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[8] K. Zhu, Operator Theory in Function Spaces, Math. Surveys Monogr., 138, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[9] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Math., 226, Springer-Verlag, New York, 2004 | MR

[10] N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Operator Theory: Adv. Appl., 185, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[11] D. Gu, “Bergman projections and duality in weighted mixed norm spaces of analytic functions”, Michigan Math. J., 39:1 (1992), 71–84 | MR | Zbl

[12] M. Jevtić, “Bounded projections and duality in mixed-norm spaces of analytic functions”, Complex Variables Theory Appl., 8:3-4 (1987), 293–301 | DOI | MR | Zbl

[13] S. Gadbois, “Mixed norm generalizations of Bergman spaces and duality”, Proc. Amer. Math. Soc., 104:4 (1988), 1171–1180 | DOI | MR | Zbl

[14] Y. Liu, “Boundedness of the Bergman type operators on mixed norm space”, Proc. Amer. Math. Soc., 130:8 (2002), 2363–2367 | DOI | MR | Zbl

[15] S. Li, “A class of integral operators on mixed norm spaces in the unit ball”, Czechoslovak Math. J., 57 (132):3 (2007), 1013–1023 | MR | Zbl

[16] A. Kufner, O. John, S. Fučik, Function Spaces, Noordhoff Int. Publ., Leyden, 1977 | MR | Zbl

[17] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princenton Univ. Press, Princenton, NJ, 1977 | MR

[18] N. Samko, S. Samko, H. Rafeiro, “Morrey–Campanato spaces: an overview”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl., 228, Springer, Basel, 2013, 293–323 | MR | Zbl

[19] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[20] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[21] V. Guliev, J. Hasanov, S. Samko, “Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces”, Math. Scand., 107:2 (2010), 285–304 | MR

[22] V. S. Guliev, J. J. Hasanov, S. G. Samko, “Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces”, J. Math. Sci., 170:4 (2010), 423–443 | DOI | MR

[23] A. Karapetyants, S. Samko, “Mixed norm variable exponent Bergman space on the unit disc”, Complex Var. Elliptic Equ., 2016 (to appear)

[24] Z. Wu, C. Xie, “$Q$ spaces and Morrey spaces”, J. Funct. Anal., 201:1 (2003), 282–297 | MR | Zbl

[25] J. Liu, Z. Lou, “Properties of analytic Morrey spaces and applications”, Math. Nachr., 288:14-15 (2015), 1673–1693 | DOI | MR | Zbl

[26] S. Samko, A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sci. Publ., Yverdon, 1993 | MR

[27] T.M. Flett, “The dual of an inequality of Hardy and Littlewood and some related inequalities”, J. Math. Anal. and Appl., 38:3 (1972), 746–765 | DOI | MR | Zbl

[28] I. Arévalo, “A characterization of the inclusions between mixed norm spaces”, J. Math. Anal. Appl., 429:5 (2015), 942–955 | DOI | MR | Zbl