Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 47-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study the mixed-norm Bergman–Morrey space $\mathscr A^{q;p,\lambda}(\mathbb D)$, mixed-norm Bergman–Morrey space of local type $\mathscr A_{\mathrm{loc}}^{q;p,\lambda}(\mathbb D)$, and mixed-norm Bergman–Morrey space of complementary type ${^{\complement}\!}\mathscr A^{q;p,\lambda}(\mathbb D)$ on the unit disk $\mathbb D$ in the complex plane $\mathbb C$. The mixed norm Lebesgue–Morrey space $\mathscr L^{q;p,\lambda}(\mathbb D)$ is defined by the requirement that the sequence of Morrey $L^{p,\lambda}(I)$-norms of the Fourier coefficients of a function $f$ belongs to $l^q$ ($I=(0,1)$). Then, $\mathscr A^{q;p,\lambda}(\mathbb D)$ is defined as the subspace of analytic functions in $\mathscr L^{q;p,\lambda}(\mathbb D)$. Two other spaces $\mathscr A_{\mathrm{loc}}^{q;p,\lambda}(\mathbb D)$ and ${^{\complement}\!}\mathscr A^{q;p,\lambda}(\mathbb D)$ are defined similarly by using the local Morrey $L_{\mathrm{loc}}^{p,\lambda}(I)$-norm and the complementary Morrey ${^{\complement}\!}L^{p,\lambda}(I)$-norm respectively. The introduced spaces inherit features of both Bergman and Morrey spaces and, therefore, we call them Bergman–Morrey-type spaces. We prove the boundedness of the Bergman projection and reveal some facts on equivalent description of these spaces.
Keywords: Bergman–Morrey-type space, mixed norm.
@article{MZM_2016_100_1_a3,
     author = {A. N. Karapetyants and S. G. Samko},
     title = {Mixed {Norm} {Bergman--Morrey-type} {Spaces} on the {Unit} {Disc}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/}
}
TY  - JOUR
AU  - A. N. Karapetyants
AU  - S. G. Samko
TI  - Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
JO  - Matematičeskie zametki
PY  - 2016
SP  - 47
EP  - 58
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/
LA  - ru
ID  - MZM_2016_100_1_a3
ER  - 
%0 Journal Article
%A A. N. Karapetyants
%A S. G. Samko
%T Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc
%J Matematičeskie zametki
%D 2016
%P 47-58
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/
%G ru
%F MZM_2016_100_1_a3
A. N. Karapetyants; S. G. Samko. Mixed Norm Bergman--Morrey-type Spaces on the Unit Disc. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a3/