Estimates for Restrictions of Monotone Operators on the Cone of Decreasing Functions in Orlicz Space
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 30-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The restriction of a monotone operator $P$ to the cone $\Omega$ of nonnegative decreasing functions from a weighted Orlicz space $L_{\varphi,v}$ without additional a priori assumptions on the properties of the Orlicz function $\varphi$ and the weight function $v$ is considered. An order-sharp two-sided estimate of the norm of this restriction is established by using a specially constructed discretization procedure. Similar estimates are also obtained for monotone operators over the corresponding Orlicz–Lorentz spaces $\Lambda_{\varphi,v}$. As applications, descriptions of associated spaces for the cone $\Omega$ and the Orlicz–Lorentz space are obtained. These new results are of current interest in the theory of such spaces.
Keywords: monotone operator, weighted Orlicz space, cone of decreasing functions, associated norm, Orlicz–Lorentz class, discretization method.
@article{MZM_2016_100_1_a2,
     author = {M. L. Gol'dman},
     title = {Estimates for {Restrictions} of {Monotone} {Operators} on the {Cone} of {Decreasing} {Functions} in {Orlicz} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {30--46},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a2/}
}
TY  - JOUR
AU  - M. L. Gol'dman
TI  - Estimates for Restrictions of Monotone Operators on the Cone of Decreasing Functions in Orlicz Space
JO  - Matematičeskie zametki
PY  - 2016
SP  - 30
EP  - 46
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a2/
LA  - ru
ID  - MZM_2016_100_1_a2
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%T Estimates for Restrictions of Monotone Operators on the Cone of Decreasing Functions in Orlicz Space
%J Matematičeskie zametki
%D 2016
%P 30-46
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a2/
%G ru
%F MZM_2016_100_1_a2
M. L. Gol'dman. Estimates for Restrictions of Monotone Operators on the Cone of Decreasing Functions in Orlicz Space. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 30-46. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a2/

[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl

[2] L. Maligranda, Orlicz Spaces and Interpolation, Seminários de Matematica, 5, Univ. Estadual de Campinas, Departamento de Matemática, Campinas, 1989 | MR

[3] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[4] H. Hudzik, A. Kaminska, M. Mastylo, “On the dual of Orlicz–Lorentz space”, Proc. Amer. Math. Soc., 130:6 (2002), 1645–1654 | MR | Zbl

[5] V. I. Ovchinnikov, “Interpolyatsiya v kvazibanakhovykh prostranstvakh Orlicha”, Funkts. analiz i ego pril., 16:3 (1982), 78–79 | MR | Zbl

[6] P. P. Zabreiko, “Ob odnoi interpolyatsionnoi teoreme dlya lineinykh operatorov”, Matem. zametki, 2:6 (1967), 593–598 | MR | Zbl

[7] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[8] G. Ya. Lozanovskii, “O nekotorykh banakhovykh reshetkakh”, Sib. matem. zhurn., 10 (1969), 584–599 | MR | Zbl

[9] G. Ya. Lozanovskii, “O nekotorykh banakhovykh reshetkakh. II”, Sib. matem. zhurn., 12 (1971), 562–567 | MR | Zbl

[10] V. I. Ovchinnikov, “The method of orbits in interpolation theory”, Math. Rep., 1:2 (1984), 349–515 | MR

[11] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math., 129, Acad. Press, Boston, MA, 1988 | MR

[12] M. L. Goldman, R. Kerman, “On the principal of duality in Orlicz–Lorentz spaces”, Function Spaces. Differential Operators. Problems of Mathematical Education, Proc. Intern. Conf. Dedicated to 75-th Birthday of Prof. L. D. Kudrjavtsev, Moscow, 1998, 179–183

[13] H. Heinig, A. Kufner, “Hardy operators on monotone functions and sequences in Orlicz Spaces”, J. London Math. Soc. (2), 53:2 (1996), 256–270 | DOI | MR | Zbl

[14] A. Kaminska, L. Maligranda, “Order convexity and concavity in Lorentz spaces $\Lambda_{p,w}$, $0

\infty$”, Studia Math., 160:3 (2004), 267–286 | DOI | MR | Zbl

[15] A. Kaminska, M. Mastylo, “Abstract duality Sawyer formula and its applications”, Monatsh. Math., 151:3 (2007), 223–245 | DOI | MR | Zbl

[16] A. Kaminska, Y. Raynaud, “New formula for decreasing rearrangements and a class of Orlicz–Lorentz spaces”, Rev. Mat. Complut., 27:2 (2014), 587–621 | DOI | MR | Zbl

[17] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl