On the Spectral Radius of Functional Operators
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 155-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the spectral radius of functional operators generated by operators of multiplication and shift operators in the space of continuous vector functions on the interval is given. It is assumed that shifts have fixed points only at both ends of the interval and belong to one type, i.e., they are either left or right shifts.
Keywords: spectral radius, shift operator, functional operator, weighted Hölder space, weighted Lebesgue space, shift.
@article{MZM_2016_100_1_a11,
     author = {A. P. Soldatov},
     title = {On the {Spectral} {Radius} of {Functional} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {155--162},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a11/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - On the Spectral Radius of Functional Operators
JO  - Matematičeskie zametki
PY  - 2016
SP  - 155
EP  - 162
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a11/
LA  - ru
ID  - MZM_2016_100_1_a11
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T On the Spectral Radius of Functional Operators
%J Matematičeskie zametki
%D 2016
%P 155-162
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a11/
%G ru
%F MZM_2016_100_1_a11
A. P. Soldatov. On the Spectral Radius of Functional Operators. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 155-162. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a11/

[1] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[2] A. P. Soldatov, Odnomepnye singulyapnye opepatopy i kpaevye zadachi teopii funktsii, Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Vysshaya shkola, M., 1991 | MR | Zbl

[3] N. A. Zhura, A. P. Soldatov, “Nelokalnye kraevye zadachi na ploskosti dlya giperbolicheskikh sistem pervogo poryadka”, Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy, Trudy mezhdunarodnoi nauchnoi konferentsii (Sterlitamak, 24–28 iyunya 2003 g.), T. 1, Gilem, Ufa, 2003, 124–130

[4] A. P. Soldatov, “Otsenka spektralnogo radiusa funktsionalnykh operatorov”, Neklassicheskie uravneniya matematicheskoi fiziki, Trudy seminara, posvyaschennye 60-letiyu prof. V. N. Vragova, Izd-vo In-ta matem., Novosibirsk, 2005, 297

[5] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl