Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_1_a10, author = {A. G. Sergeev}, title = {Quantum {Calculus} and {Quasiconformal} {Mappings}}, journal = {Matemati\v{c}eskie zametki}, pages = {144--154}, publisher = {mathdoc}, volume = {100}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a10/} }
A. G. Sergeev. Quantum Calculus and Quasiconformal Mappings. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 144-154. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a10/
[1] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[2] A. G. Sergeev, “Lektsii ob universalnom prostranstve Teikhmyullera”, Lekts. kursy NOTs, 21, MIAN, M., 2013, 3–130 | DOI | Zbl
[3] A. G. Sergeev, “Kvantovanie sobolevskogo prostranstva poludifferentsiruemykh funktsii”, Matem. sb., 2016 (to appear)
[4] L. V. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973 | MR | Zbl
[5] S. C. Power, “Hankel Operators on Hilbert Space”, Research Notes in Math., 64 (1982), Pitman, Boston, MA | MR | Zbl
[6] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl
[7] O. Lehto, K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren Math. Wiss., 126, Springer-Verlag, Berlin, 1973 | MR | Zbl
[8] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl
[9] A. G. Sergeev, “Geometricheskoe kvantovanie prostranstv petel”, Sovr. probl. matem., 13, MIAN, M., 2009, 3–294 | DOI