Well-Posed Boundary-Value Problems, Right Hyperbolicity, and Exponential Dichotomy
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 13-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between the existence of well-posed boundary-value problems and exponential dichotomy for functional equations and linear differential-operator equations on a half-line is considered. It is shown that well-posed boundary-value problems can exist for equations without the exponential dichotomy property.
Keywords: differential operator equation, boundary-value problem, hyperbolic operator, exponential dichotomy, spectrum.
@article{MZM_2016_100_1_a1,
     author = {A. B. Antonevich and E. V. Panteleeva},
     title = {Well-Posed {Boundary-Value} {Problems,} {Right} {Hyperbolicity,} and {Exponential} {Dichotomy}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a1/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - E. V. Panteleeva
TI  - Well-Posed Boundary-Value Problems, Right Hyperbolicity, and Exponential Dichotomy
JO  - Matematičeskie zametki
PY  - 2016
SP  - 13
EP  - 29
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a1/
LA  - ru
ID  - MZM_2016_100_1_a1
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A E. V. Panteleeva
%T Well-Posed Boundary-Value Problems, Right Hyperbolicity, and Exponential Dichotomy
%J Matematičeskie zametki
%D 2016
%P 13-29
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a1/
%G ru
%F MZM_2016_100_1_a1
A. B. Antonevich; E. V. Panteleeva. Well-Posed Boundary-Value Problems, Right Hyperbolicity, and Exponential Dichotomy. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a1/

[1] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32 (1930), 703–728 | Zbl

[2] Kh. L. Massera, Kh. Kh. Sheffer, Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970 | MR

[3] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[4] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[5] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (409) (2013), 77–128 | DOI | MR | Zbl

[6] A. B. Antonevich, E. V. Panteleeva, “Pravostoronnie rezolventy diskretnykh operatorov vzveshennogo sdviga s matrichnymi vesami”, PFMT, 2013, no. 3 (16), 45–54 | Zbl

[7] A. B. Antonevich, E. V. Panteleeva, “Pravostoronnyaya giperbolichnost operatorov, porozhdennykh otobrazheniyami tipa Morsa–Smeila”, Vestn. Grodnensk. GU im. Ya. Kupaly. Ser. 2. Matem. Fiz. Inform., vychislit. tekhn. i uprav., 2014, no. 1 (170), 65–72

[8] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Izd-vo “Universitetskoe”, Minsk, 1988 | MR | Zbl

[9] A. Antonevich, A. Lebedev, Functional Differential Equations. I. $C^*$-theory, Longman Sci. Tech., Harlow, 1994 | MR | Zbl

[10] I. U. Bronshtein, Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR

[11] A. S. Mischenko, Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR | Zbl

[12] A. B. Antonevich, E. V. Panteleeva, “Right-Side Hyperbolic Operators”, Sci. Publ. of the State Univ. of Novi Pazar Ser. A: Appl. Math., Inform. and Mech., 6:1 (2014), 1–9 | DOI

[13] A. B. Antonevich, A. A. Akhmatova, Yu. Makovska, “Otobrazheniya s razdelimoi dinamikoi i spektralnye svoistva porozhdennykh imi operatorov”, Matem. sb., 206:3 (2015), 3–34 | DOI | MR | Zbl

[14] M. S. Bichegkuev, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami v vesovykh prostranstvakh funktsii”, Matem. zametki, 95:1 (2014), 18–25 | DOI

[15] A. G. Baskakov, “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | MR | Zbl