On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under natural conditions, we prove an existence theorem for stochastic differential equations with current velocities (mean derivatives) and with nonautonomous right-hand side.
Keywords: mean derivative, current velocity, equation with current velocities
Mots-clés : existence of a solution.
@article{MZM_2016_100_1_a0,
     author = {S. V. Azarina and Yu. E. Gliklikh},
     title = {On the {Solvability} of {Nonautonomous} {Stochastic} {Differential} {Equations} with {Current} {Velocities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a0/}
}
TY  - JOUR
AU  - S. V. Azarina
AU  - Yu. E. Gliklikh
TI  - On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities
JO  - Matematičeskie zametki
PY  - 2016
SP  - 3
EP  - 12
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a0/
LA  - ru
ID  - MZM_2016_100_1_a0
ER  - 
%0 Journal Article
%A S. V. Azarina
%A Yu. E. Gliklikh
%T On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities
%J Matematičeskie zametki
%D 2016
%P 3-12
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a0/
%G ru
%F MZM_2016_100_1_a0
S. V. Azarina; Yu. E. Gliklikh. On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a0/

[1] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[2] E. Nelson, Dynamical Theory of Brownian Motion, Princeton Univ. Press, Princeton, 1967 | MR | Zbl

[3] E. Nelson, Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985 | MR | Zbl

[4] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynam. Systems Appl., 16:1 (2007), 49–71 | MR | Zbl

[5] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011 | MR | Zbl

[6] J. Cresson, S. Darses, “Stochastic embedding of dynamical systems”, J. Math. Phys., 48 (2007), 072703 | MR

[7] K. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983 | MR | Zbl

[8] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 25–39 | Zbl

[9] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 3, Fizmatlit, M., 1975