Spectral Trace Formula for Local Fields
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 872-877

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the space of square-integrable functions on a local field and an operator acting as a sum of an operator of multiplication by a function and a convolution with a distribution (generalized function) are considered. The main result is a trace formula for such operators.
Keywords: local field, operator of multiplication, convolution with a distribution
Mots-clés : trace formula.
@article{MZM_2015_98_6_a7,
     author = {R. S. Ismagilov},
     title = {Spectral {Trace} {Formula} for {Local} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {872--877},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Spectral Trace Formula for Local Fields
JO  - Matematičeskie zametki
PY  - 2015
SP  - 872
EP  - 877
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/
LA  - ru
ID  - MZM_2015_98_6_a7
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Spectral Trace Formula for Local Fields
%J Matematičeskie zametki
%D 2015
%P 872-877
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/
%G ru
%F MZM_2015_98_6_a7
R. S. Ismagilov. Spectral Trace Formula for Local Fields. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 872-877. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/