Mots-clés : trace formula.
@article{MZM_2015_98_6_a7,
author = {R. S. Ismagilov},
title = {Spectral {Trace} {Formula} for {Local} {Fields}},
journal = {Matemati\v{c}eskie zametki},
pages = {872--877},
year = {2015},
volume = {98},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/}
}
R. S. Ismagilov. Spectral Trace Formula for Local Fields. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 872-877. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a7/
[1] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl
[2] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5 (2006), 89–156 | DOI | MR | Zbl
[3] B. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl
[4] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teoriya predstavlenii”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 275–302 | MR | Zbl
[5] R. S. Ismagilov, “O spektre samosopryazhennogo operatora v $L_2(K)$, gde $K$ – lokalnoe pole; analog formuly Feinmana–Katsa”, TMF, 89:1 (1991), 18–24 | MR | Zbl
[6] C. J. A. Halberg Jr., V. A. Kramer, “A generalization of the trace concept”, Duke Math. J., 27:4 (1960), 607–617 | DOI | MR | Zbl
[7] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl