Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 865-871.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a holomorphic function in the disk $U=\{z:|z|1\}$, $|f(z)|1$ in $U$, let $f(\pm1)=\pm1$ in the sense of angular limits, and let the angular Schwarzian derivatives $S_{f}(\pm1)$ exist. We establish an upper bound for the sum $S_{f}(-1)+S_{f}(1)$ under the assumption that the image $f(U)$ does not contain open arcs of the pencil of circles $\arg[(1+w)/(1-w)]=\theta$, $-\pi/2\theta\varphi$, with endpoints $w=\pm1$ and $$ \operatorname{Re} f''(1)+f'(1)(1-f'(1))=-\operatorname{Re} f''(-1)+f'(-1)(1-f'(-1))=0. $$ This bound depends on $\varphi$ and $f'(\pm1)$ only.
Keywords: Schwarzian derivative, holomorphic functions, boundary distortion, covering theorem.
@article{MZM_2015_98_6_a6,
     author = {V. N. Dubinin},
     title = {Schwarzian {Derivative} and {Covering} {Arcs} of a {Pencil} of {Circles} by {Holomorphic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {865--871},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a6/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 865
EP  - 871
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a6/
LA  - ru
ID  - MZM_2015_98_6_a6
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions
%J Matematičeskie zametki
%D 2015
%P 865-871
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a6/
%G ru
%F MZM_2015_98_6_a6
V. N. Dubinin. Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 865-871. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a6/

[1] P. S. Bourdon, J. H. Shapiro, “Cyclic phenomena for composition operators”, Mem. Amer. Math. Soc., 125, no. 4, Amer. Math. Soc., Providence, RI, 1997 | MR

[2] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl., 45:2 (2001), 151–165 | MR | Zbl

[3] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Matem. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl

[4] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105:1 (2008), 19–42 | DOI | MR | Zbl

[5] V. N. Dubinin, M. Vuorinen, “Ahlfors–Beurling conformal invariant and relative capacity of compact sets”, Proc. Amer. Math. Soc., 142:11 (2014), 3865–3879 | DOI | MR | Zbl

[6] G. F. Lawler, Conformally Invariant Processes in the Plane, Math. Surveys Monogr., 114, Providence, RI, Amer. Math. Soc., 2005 | MR | Zbl

[7] V. N. Dubinin, “Dvutochechnaya granichnaya otsenka proizvodnoi Shvartsa golomorfnoi funktsii”, Dalnevost. matem. zhurn., 14:2 (2014), 191–199

[8] V. V. Goryainov, “Polugruppy analiticheskikh funktsii v analize i prilozheniyakh”, UMN, 67:6 (2012), 5–52 | DOI | MR | Zbl

[9] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl

[10] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[11] V N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Matem. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl