Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 853-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the boundary-value problem for a nonlinear elliptic equation containing a small parameter multiplying the derivatives and degenerating into a finite equation as the small parameter tends to zero. The existence theorem for the solution with a boundary layer and its Lyapunov stability are proved.
Keywords: singularly perturbed reaction-diffusion-advection problem, nonlinear elliptic equation with small parameter, Lyapunov stability, boundary layer, boundary layer expansion.
@article{MZM_2015_98_6_a5,
     author = {M. A. Davydova},
     title = {Existence and {Stability} of {Solutions} with {Boundary} {Layers} in {Multidimensional} {Singularly} {Perturbed} {Reaction-Diffusion-Advection} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--864},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a5/}
}
TY  - JOUR
AU  - M. A. Davydova
TI  - Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems
JO  - Matematičeskie zametki
PY  - 2015
SP  - 853
EP  - 864
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a5/
LA  - ru
ID  - MZM_2015_98_6_a5
ER  - 
%0 Journal Article
%A M. A. Davydova
%T Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems
%J Matematičeskie zametki
%D 2015
%P 853-864
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a5/
%G ru
%F MZM_2015_98_6_a5
M. A. Davydova. Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 853-864. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a5/

[1] N. N. Nefedov, M. A. Davydova, “Kontrastnye struktury v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Differents. uravneniya, 48:5 (2012), 738–748 | MR | Zbl

[2] N. N. Nefedov, M. A. Davydova, “Kontrastnye struktury v singulyarno vozmuschennykh kvazilineinykh uravneniyakh reaktsiya-diffuziya-advektsiya”, Differents. uravneniya, 49:6 (2013), 715–733 | MR | Zbl

[3] N. N. Nefedov, K. Sakamoto, “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | MR | Zbl

[4] N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Kontrastnye struktury v uravneniyakh reaktsiya-diffuziya-advektsiya v sluchae sbalansirovannoi advektsii”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 365–376 | DOI | MR | Zbl

[5] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Nauka, M., 1982 | MR | Zbl

[6] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Vysshaya shkola, M., 1990 | MR | Zbl

[7] A. B. Vasileva, “O periodicheskikh resheniyakh parabolicheskoi zadachi s malym parametrom pri proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 975–986 | MR | Zbl

[8] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Differentsialnye uravneniya i topologiya. I, Tr. MIAN, 268, MAIK, M., 2010, 268–283 | MR | Zbl

[9] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov singulyarno vozmuschennykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR | Zbl

[10] N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci., 8236, Springer-Verlag, Heidelberg, 2013, 62–72 | MR | Zbl