On Continuous Restrictions of Measurable Multilinear Mappings
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 930-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with measurable multilinear mappings on Fréchet spaces and analogs of two properties which are equivalent for a measurable (with respect to gaussian measure) linear functional: (i) there exists a sequence of continuous linear functions converging to the functional almost everywhere; (ii) there exists a compactly embedded Banach space $X$ of full measure such that the functional is continuous on it. We show that these properties for multilinear functions defined on a power of the space $X$ are not equivalent; but property (ii) is equivalent to the apparently stronger condition that the compactly embedded subspace is a power of the subspace embedded in $X$.
Keywords: measurable multilinear form, measurable bilinear form, Gaussian measure, compact embedding, Banach space, Radon probability measure.
@article{MZM_2015_98_6_a12,
     author = {E. V. Yurova},
     title = {On {Continuous} {Restrictions} of {Measurable} {Multilinear} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {930--936},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a12/}
}
TY  - JOUR
AU  - E. V. Yurova
TI  - On Continuous Restrictions of Measurable Multilinear Mappings
JO  - Matematičeskie zametki
PY  - 2015
SP  - 930
EP  - 936
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a12/
LA  - ru
ID  - MZM_2015_98_6_a12
ER  - 
%0 Journal Article
%A E. V. Yurova
%T On Continuous Restrictions of Measurable Multilinear Mappings
%J Matematičeskie zametki
%D 2015
%P 930-936
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a12/
%G ru
%F MZM_2015_98_6_a12
E. V. Yurova. On Continuous Restrictions of Measurable Multilinear Mappings. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 930-936. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a12/

[1] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[2] E. V. Yurova, “O nepreryvnykh suzheniyakh lineinykh izmerimykh operatorov”, Dokl. RAN, 443:3 (2012), 300–303 | MR | Zbl

[3] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2009

[4] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[5] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and Stochastic Analysis, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | MR

[6] V. I. Bogachev, Measure Theory, Vol. II, Springer-Verlag, New York, 2007 | MR | Zbl

[7] L. M. Arutyunyan, I. S. Yaroslavtsev, “Ob izmerimykh mnogochlenakh na beskonechnomernykh prostranstvakh”, Dokl. RAN, 449:6 (2013), 627–631 | MR | Zbl

[8] O. G. Smolyanov, “Izmerimye polilineinye i stepennye funktsionaly v nekotorykh lineinykh prostranstvakh s meroi”, Dokl. AN SSSR, 170:3 (1966), 526–529 | Zbl

[9] L. M. Arutyunyan, E. D. Kosov, I. S. Yaroslavtsev, “On convex compact sets of positive measure in linear spaces”, Math. Notes, 96:3 (2014), 448–450 | MR | Zbl

[10] H. von Weizsäcker, “A note on infinite dimensional convex sets”, Math. Scand., 38:2 (1976), 321–324 | MR | Zbl