On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 907-922.

Voir la notice de l'article provenant de la source Math-Net.Ru

Optimal (minimal) Banach spaces containing given cones of monotone or quasiconcave functions on the semiaxis from weighted Lebesgue spaces are described. Exact formulas for the norm of the optimal space are presented. All cases of the summation parameter are studied.
Keywords: optimal (minimal) Banach space, cone of monotone functions, cone of quasiconcave functions, weighted Lebesgue space, Sinnamon's lemma.
@article{MZM_2015_98_6_a10,
     author = {V. D. Stepanov},
     title = {On {Optimal} {Banach} {Spaces} {Containing} a {Weight} {Cone} of {Monotone} or {Quasiconcave} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--922},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/}
}
TY  - JOUR
AU  - V. D. Stepanov
TI  - On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 907
EP  - 922
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/
LA  - ru
ID  - MZM_2015_98_6_a10
ER  - 
%0 Journal Article
%A V. D. Stepanov
%T On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions
%J Matematičeskie zametki
%D 2015
%P 907-922
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/
%G ru
%F MZM_2015_98_6_a10
V. D. Stepanov. On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 907-922. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/

[1] M. L. Goldman, P. P. Zabreiko, “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, MAIK, M., 2014, 142–156 | DOI | Zbl

[2] M. L. Goldman, R. Kerman, “Ob optimalnom vlozhenii prostranstv Kalderona i obobschennykh prostranstv Besova”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, Nauka, M., 2003, 161–193 | MR | Zbl

[3] M. L. Goldman, “Ob optimalnykh vlozheniyakh obobschennykh potentsialov Besselya i Rissa”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 91–111 | MR | Zbl

[4] M. L. Goldman, D. D. Haroske, “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl

[5] D. Haroske, Envelopes and Sharp Embeddings of Function Spaces, Chapman Hall/CRC Res. Notes Math., 437, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[6] A. Gogatishvili, B. Opic, J. S. Neves, “Optimality of embeddings of Bessel-potential-type space into Lorentz-Karamata spaces”, Proc. Roy. Soc. Edinburgh Sect. A, 134:6 (2004), 1127–1147 | DOI | MR | Zbl

[7] A. Gogatishvili, J. S. Neves, B. Opic, “Optimal embeddings and compact embeddings of Bessel-potential-type space”, Math. Z., 262:3 (2009), 645–682 | DOI | MR | Zbl

[8] V. D. Stepanov, “Weighted inequalities for a class of Volterra convolution operators”, J. London Math. Soc. (2), 45:2 (1992), 232–242 | DOI | MR | Zbl

[9] M. L. Gol'dman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl

[10] A. Gogatishvili, L. Pick, “Discretization and antidiscretization of rearrangement-invariant norms”, Publ. Mat., 47:2 (2003), 311–358 | DOI | MR | Zbl

[11] A. Gogatishvili, L. Pick, “Embeddings and duality theorems for weak classical Lorentz spaces”, Canad. Math. Bull., 49:1 (2006), 82–95 | DOI | MR | Zbl

[12] A. Gogatishvili, R. Kerman, “The rearrangement-invariant space $\Gamma_{p,\phi}$”, Positivity, 18:2 (2014), 319–345 | DOI | MR | Zbl

[13] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl

[14] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | MR | Zbl

[15] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl

[16] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Anal. Math., 37:2 (2011), 83–102 | DOI | MR | Zbl

[17] A. I. Tyulenev, “Zadacha o sledakh dlya prostranstv Soboleva s vesami tipa Makenkhaupta”, Matem. zametki, 94:5 (2013), 720–732 | DOI | MR | Zbl

[18] R. G. Nasibullin, “Obobscheniya neravenstv tipa Khardi v forme Yu. A. Dubinskogo”, Matem. zametki, 95:1 (2014), 109–122 | MR | Zbl

[19] O. V. Besov, “Vlozhenie prostranstva Soboleva i svoistva oblasti”, Matem. zametki, 96:3 (2014), 343–349 | DOI | Zbl

[20] G. Sinnamon, “Embeddings of concave functions and duals of Lorentz spaces”, Publ. Mat., 46:2 (2002), 489–515 | DOI | MR | Zbl

[21] L.-E. Persson, O. V. Popova, V. D. Stepanov, “Weighted Hardy-type inequalities on the cone of quasi-concave functions”, Math. Inequal. Appl., 17:3 (2014), 879–898 | MR | Zbl

[22] D. V. Prokhorov, V. D. Stepanov, “Otsenki odnogo klassa sublineinykh integralnykh operatorov”, Dokl. RAN, 456:6 (2014), 645–649 | DOI | MR | Zbl

[23] S. V. Astashkin, “Ob approksimatsii podprostranstv simmetrichnykh prostranstv, porozhdennykh nezavisimymi funktsiyami”, Matem. zametki, 96:5 (2014), 643–652 | DOI | MR | Zbl

[24] V. D. Stepanov, G. E. Shambilova, “O vesovoi ogranichennosti odnogo klassa kvazilineinykh operatorov na konuse monotonnykh funktsii”, Dokl. RAN, 458:3 (2014), 268–271 | DOI | Zbl

[25] V. G. Krotov, A. I. Porabkovich, “Otsenki $L^p$-ostsillyatsii funktsii pri $p>0$”, Matem. zametki, 97:3 (2015), 407–420 | DOI | MR | Zbl

[26] L.-E. Persson, G. E. Shambilova, V. D. Stepanov, “Hardy-type inequalities on the weighted cones of quasi-concave functions”, Banach J. Math. Anal., 9:2 (2015), 21–34 | DOI | MR | Zbl

[27] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[28] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54:1 (1996), 89–101 | DOI | MR | Zbl

[29] A. Gogatishvili, V. D. Stepanov, “Reduktsionnye teoremy dlya vesovykh integralnykh neravenstv na konuse monotonnykh funktsii”, UMN, 68:4 (2013), 3–68 | DOI | MR | Zbl

[30] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl