Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_6_a10, author = {V. D. Stepanov}, title = {On {Optimal} {Banach} {Spaces} {Containing} a {Weight} {Cone} of {Monotone} or {Quasiconcave} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {907--922}, publisher = {mathdoc}, volume = {98}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/} }
V. D. Stepanov. On Optimal Banach Spaces Containing a Weight Cone of Monotone or Quasiconcave Functions. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 907-922. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a10/
[1] M. L. Goldman, P. P. Zabreiko, “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, MAIK, M., 2014, 142–156 | DOI | Zbl
[2] M. L. Goldman, R. Kerman, “Ob optimalnom vlozhenii prostranstv Kalderona i obobschennykh prostranstv Besova”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, Nauka, M., 2003, 161–193 | MR | Zbl
[3] M. L. Goldman, “Ob optimalnykh vlozheniyakh obobschennykh potentsialov Besselya i Rissa”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 91–111 | MR | Zbl
[4] M. L. Goldman, D. D. Haroske, “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl
[5] D. Haroske, Envelopes and Sharp Embeddings of Function Spaces, Chapman Hall/CRC Res. Notes Math., 437, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl
[6] A. Gogatishvili, B. Opic, J. S. Neves, “Optimality of embeddings of Bessel-potential-type space into Lorentz-Karamata spaces”, Proc. Roy. Soc. Edinburgh Sect. A, 134:6 (2004), 1127–1147 | DOI | MR | Zbl
[7] A. Gogatishvili, J. S. Neves, B. Opic, “Optimal embeddings and compact embeddings of Bessel-potential-type space”, Math. Z., 262:3 (2009), 645–682 | DOI | MR | Zbl
[8] V. D. Stepanov, “Weighted inequalities for a class of Volterra convolution operators”, J. London Math. Soc. (2), 45:2 (1992), 232–242 | DOI | MR | Zbl
[9] M. L. Gol'dman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl
[10] A. Gogatishvili, L. Pick, “Discretization and antidiscretization of rearrangement-invariant norms”, Publ. Mat., 47:2 (2003), 311–358 | DOI | MR | Zbl
[11] A. Gogatishvili, L. Pick, “Embeddings and duality theorems for weak classical Lorentz spaces”, Canad. Math. Bull., 49:1 (2006), 82–95 | DOI | MR | Zbl
[12] A. Gogatishvili, R. Kerman, “The rearrangement-invariant space $\Gamma_{p,\phi}$”, Positivity, 18:2 (2014), 319–345 | DOI | MR | Zbl
[13] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl
[14] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | MR | Zbl
[15] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl
[16] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Anal. Math., 37:2 (2011), 83–102 | DOI | MR | Zbl
[17] A. I. Tyulenev, “Zadacha o sledakh dlya prostranstv Soboleva s vesami tipa Makenkhaupta”, Matem. zametki, 94:5 (2013), 720–732 | DOI | MR | Zbl
[18] R. G. Nasibullin, “Obobscheniya neravenstv tipa Khardi v forme Yu. A. Dubinskogo”, Matem. zametki, 95:1 (2014), 109–122 | MR | Zbl
[19] O. V. Besov, “Vlozhenie prostranstva Soboleva i svoistva oblasti”, Matem. zametki, 96:3 (2014), 343–349 | DOI | Zbl
[20] G. Sinnamon, “Embeddings of concave functions and duals of Lorentz spaces”, Publ. Mat., 46:2 (2002), 489–515 | DOI | MR | Zbl
[21] L.-E. Persson, O. V. Popova, V. D. Stepanov, “Weighted Hardy-type inequalities on the cone of quasi-concave functions”, Math. Inequal. Appl., 17:3 (2014), 879–898 | MR | Zbl
[22] D. V. Prokhorov, V. D. Stepanov, “Otsenki odnogo klassa sublineinykh integralnykh operatorov”, Dokl. RAN, 456:6 (2014), 645–649 | DOI | MR | Zbl
[23] S. V. Astashkin, “Ob approksimatsii podprostranstv simmetrichnykh prostranstv, porozhdennykh nezavisimymi funktsiyami”, Matem. zametki, 96:5 (2014), 643–652 | DOI | MR | Zbl
[24] V. D. Stepanov, G. E. Shambilova, “O vesovoi ogranichennosti odnogo klassa kvazilineinykh operatorov na konuse monotonnykh funktsii”, Dokl. RAN, 458:3 (2014), 268–271 | DOI | Zbl
[25] V. G. Krotov, A. I. Porabkovich, “Otsenki $L^p$-ostsillyatsii funktsii pri $p>0$”, Matem. zametki, 97:3 (2015), 407–420 | DOI | MR | Zbl
[26] L.-E. Persson, G. E. Shambilova, V. D. Stepanov, “Hardy-type inequalities on the weighted cones of quasi-concave functions”, Banach J. Math. Anal., 9:2 (2015), 21–34 | DOI | MR | Zbl
[27] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[28] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54:1 (1996), 89–101 | DOI | MR | Zbl
[29] A. Gogatishvili, V. D. Stepanov, “Reduktsionnye teoremy dlya vesovykh integralnykh neravenstv na konuse monotonnykh funktsii”, UMN, 68:4 (2013), 3–68 | DOI | MR | Zbl
[30] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl