Generalization of the Law of the Iterated Logarithm for Associated Random Fields
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781
Voir la notice de l'article provenant de la source Math-Net.Ru
A variant of the law of the iterated logarithm for associated fields for which the indexing set for partial sums can be arbitrarily unbounded is proved. Depending on the structure of this set, an explicit value of the upper limit in the law of the iterated logarithm is given.
Keywords:
law of the iterated logarithm, associated random field, indexing set, multi-indexed random variable, covariance function, Bolthausen theorem.
Mots-clés : Cox–Grimmet coefficients
Mots-clés : Cox–Grimmet coefficients
@article{MZM_2015_98_5_a9,
author = {A. P. Shashkin},
title = {Generalization of the {Law} of the {Iterated} {Logarithm} for {Associated} {Random} {Fields}},
journal = {Matemati\v{c}eskie zametki},
pages = {769--781},
publisher = {mathdoc},
volume = {98},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/}
}
A. P. Shashkin. Generalization of the Law of the Iterated Logarithm for Associated Random Fields. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/