Generalization of the Law of the Iterated Logarithm for Associated Random Fields
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the law of the iterated logarithm for associated fields for which the indexing set for partial sums can be arbitrarily unbounded is proved. Depending on the structure of this set, an explicit value of the upper limit in the law of the iterated logarithm is given.
Keywords: law of the iterated logarithm, associated random field, indexing set, multi-indexed random variable, covariance function, Bolthausen theorem.
Mots-clés : Cox–Grimmet coefficients
@article{MZM_2015_98_5_a9,
     author = {A. P. Shashkin},
     title = {Generalization of the {Law} of the {Iterated} {Logarithm} for {Associated} {Random} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {769--781},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Generalization of the Law of the Iterated Logarithm for Associated Random Fields
JO  - Matematičeskie zametki
PY  - 2015
SP  - 769
EP  - 781
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/
LA  - ru
ID  - MZM_2015_98_5_a9
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Generalization of the Law of the Iterated Logarithm for Associated Random Fields
%J Matematičeskie zametki
%D 2015
%P 769-781
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/
%G ru
%F MZM_2015_98_5_a9
A. P. Shashkin. Generalization of the Law of the Iterated Logarithm for Associated Random Fields. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/