Generalization of the Law of the Iterated Logarithm for Associated Random Fields
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the law of the iterated logarithm for associated fields for which the indexing set for partial sums can be arbitrarily unbounded is proved. Depending on the structure of this set, an explicit value of the upper limit in the law of the iterated logarithm is given.
Keywords: law of the iterated logarithm, associated random field, indexing set, multi-indexed random variable, covariance function, Bolthausen theorem.
Mots-clés : Cox–Grimmet coefficients
@article{MZM_2015_98_5_a9,
     author = {A. P. Shashkin},
     title = {Generalization of the {Law} of the {Iterated} {Logarithm} for {Associated} {Random} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {769--781},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Generalization of the Law of the Iterated Logarithm for Associated Random Fields
JO  - Matematičeskie zametki
PY  - 2015
SP  - 769
EP  - 781
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/
LA  - ru
ID  - MZM_2015_98_5_a9
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Generalization of the Law of the Iterated Logarithm for Associated Random Fields
%J Matematičeskie zametki
%D 2015
%P 769-781
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/
%G ru
%F MZM_2015_98_5_a9
A. P. Shashkin. Generalization of the Law of the Iterated Logarithm for Associated Random Fields. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 769-781. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a9/

[1] A. V. Bulinskii, “Novyi variant funktsionalnogo zakona povtornogo logarifma”, TVP, 25:3 (1980), 502–512 | MR | Zbl

[2] Y.-C. Qi, “On strong convergence of arrays”, Bull. Austral. Math. Soc., 50:2 (1994), 219–223 | DOI | MR | Zbl

[3] A. V. Bulinskii, M. A. Lifshits, “Skorost skhodimosti v funktsionalnom zakone povtornogo logarifma pri nestandartnykh normiruyuschikh mnozhitelyakh”, UMN, 50:5 (1995), 83–102 | MR | Zbl

[4] G. J. Zimmerman, “Some sample function properties of the two-parameter Gaussian process”, Ann. Math. Statist., 43 (1972), 1235–1246 | DOI | MR | Zbl

[5] M. J. Wichura, “Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments”, Ann. Probab., 1 (1973), 272–296 | DOI | MR | Zbl

[6] M. T. Lacey, “A remark on the multiparameter law of the iterated logarithm”, Stochastic Process. Appl., 32:2 (1989), 355–367 | DOI | MR | Zbl

[7] A. Gut, F. Johnson, U. Stadtmüller, “Between the LIL and the LSL”, Bernoulli, 16:1 (2010), 1–22 | DOI | MR | Zbl

[8] A. Shashkin, “A variant of the LIL for multiparameter Brownian motion”, Transactions of XXV International Seminar on Stability Problems for Stochastic Models (Maiori (Salerno), Italy, September 20–24), Maiori, 2005, 258–263

[9] A. V. Bulinskii, A. P. Shashkin, Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, FIZMATLIT, M., 2008

[10] A. V. Bulinskii, “Funktsionalnyi zakon povtornogo logarifma dlya assotsiirovannykh sluchainykh polei”, Fundament. i prikl. matem., 1:3 (1995), 623–639 | MR | Zbl