Lyapunov Functions in Justification Theorems for Asymptotics
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 695-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formal asymptotic solution is considered for a nonlinear system of ordinary differential equations in a neighborhood of a singular point. The problem of existence of an exact solution with such an asymptotics and the problem of stability of this solution are solved. The main tool in these studies is the Lyapunov function for a system linearized on a formal solution.
Keywords: ordinary differential equations, asymptotic solution, singular point, Lyapunov function, dynamical system.
Mots-clés : exact solution
@article{MZM_2015_98_5_a4,
     author = {L. A. Kalyakin},
     title = {Lyapunov {Functions} in {Justification} {Theorems} for {Asymptotics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {695--709},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a4/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Lyapunov Functions in Justification Theorems for Asymptotics
JO  - Matematičeskie zametki
PY  - 2015
SP  - 695
EP  - 709
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a4/
LA  - ru
ID  - MZM_2015_98_5_a4
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Lyapunov Functions in Justification Theorems for Asymptotics
%J Matematičeskie zametki
%D 2015
%P 695-709
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a4/
%G ru
%F MZM_2015_98_5_a4
L. A. Kalyakin. Lyapunov Functions in Justification Theorems for Asymptotics. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 695-709. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a4/

[1] V. V. Kozlov, S. D. Furta, Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Mosk. un-ta, M., 1996 | MR | Zbl

[2] A. D. Bryuno, “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, UMN, 59:3 (2004), 31–80 | DOI | MR | Zbl

[3] A. N. Kuznetsov, “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego pril., 23:4 (1989), 63–74 | MR | Zbl

[4] Zh.-P. Ramis, Raskhodyaschiesya ryady i asimptoticheskie teorii, IKI, M.–Izhevsk, 2002

[5] L. A. Kalyakin, “Justification of asymptotic expansion at infinity”, J. Nonlinear Math. Phys., 15, Suppl. 3 (2008), 220–226 | DOI | MR

[6] L. A. Kalyakin, M. A. Shamsutdinov, “Avtorezonansnye asimptotiki v ostsilliruyuschei sisteme so slaboi dissipatsiei”, TMF, 160:1 (2009), 102–111 | DOI | MR | Zbl

[7] S. Yu. Dobrokhotov, V. P. Maslov, “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, VINITI, M., 1980, 3–94 | MR | Zbl

[8] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[9] U. Elias, H. Gingold, “A method for asymptotic integration of almost diagonal systems”, Asymptot. Anal., 29:3-4 (2002), 343–357 | MR | Zbl

[10] L. A. Kalyakin, “Asimptoticheskii analiz modelei avtorezonansa”, UMN, 63:5 (2008), 3–72 | DOI | MR | Zbl

[11] I. G. Malkin, Teoriya ustoichivosti dvizheniya, GITTL, M.–L., 1952 | MR | Zbl

[12] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[13] R. Z. Khasminskii, Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR | Zbl

[14] L. A. Kalyakin, O. A. Sultanov, “Ustoichivost modelei avtorezonansa”, Differents. uravneniya, 49:3 (2013), 279–293 | MR | Zbl

[15] L. A. Kalyakin, “Metod usredneniya v zadachakh ob asimptotike na beskonechnosti”, Ufimsk. matem. zhurn., 1:2 (2009), 29–52 | Zbl

[16] Zh. La-Sall, S. Lefshets, Issledovanie ustoichivosti pryamym metodom Lyapunova, Mir, M., 1964 | MR | Zbl

[17] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[18] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, URSS, M., 2004 | MR | Zbl