On the Sharpness of Jackson's Inequality in the Spaces~$L_p$ on the Half-Line with Power Weight
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 684-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_p$, $1\leq p2$, on the half-line with power weight, Jackson's inequality between the value of the best approximation of a function by even entire functions of exponential type and its modulus of continuity defined by means of a generalized shift operator is well known. The question of the sharpness of the inequality remained open. For the constant in Jackson's inequality, we obtain a lower bound, which proves its sharpness.
Keywords: Jackson's inequality, value of the best approximation, the space $L_p$, entire functions of exponential type, modulus of continuity, generalized shift operator, substochastic matrix, Hoeffding estimate.
Mots-clés : $1\leq p<2$
@article{MZM_2015_98_5_a3,
     author = {V. I. Ivanov},
     title = {On the {Sharpness} of {Jackson's} {Inequality} in the {Spaces~}$L_p$ on the {Half-Line} with {Power} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--694},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a3/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - On the Sharpness of Jackson's Inequality in the Spaces~$L_p$ on the Half-Line with Power Weight
JO  - Matematičeskie zametki
PY  - 2015
SP  - 684
EP  - 694
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a3/
LA  - ru
ID  - MZM_2015_98_5_a3
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T On the Sharpness of Jackson's Inequality in the Spaces~$L_p$ on the Half-Line with Power Weight
%J Matematičeskie zametki
%D 2015
%P 684-694
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a3/
%G ru
%F MZM_2015_98_5_a3
V. I. Ivanov. On the Sharpness of Jackson's Inequality in the Spaces~$L_p$ on the Half-Line with Power Weight. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 684-694. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a3/

[1] O. L. Vinogradov, “O konstante v neravenstve Dzheksona dlya prostranstv $L^p(-\infty, +\infty)$”, Vestn. S.-Peterburg. un-ta. Ser. 1, 1994, no. 3, 15–22 | MR | Zbl

[2] A. V. Moskovskii, “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb{R}^n)$ i $L_{p,\lambda}(\mathbb{R}_+)$”, Izv. TulGU. Ser. Matem. Mekh. Inform., 3:1 (1997), 44–70 | MR

[3] V. I. Ivanov, D. V. Chertova, “Ob otsenke snizu konstant Dzheksona v prostranstvakh $L_p$, $1\leq p2$, na pryamoi so stepennym vesom”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 81–93

[4] V. I. Berdyshev, “O teoreme Dzheksona v $L_p$”, Priblizhenie funktsii v srednem, Tr. MIAN SSSR, 88, 1967, 3–16 | MR | Zbl

[5] V. I. Ivanov, “Ob otsenke snizu konstanty v neravenstve Dzheksona v raznykh $L_p$-normakh”, Matem. zametki, 52:3 (1992), 48–62 | MR | Zbl

[6] S. A. Pichugov, “Konstanta Yunga prostranstva $L_p$”, Matem. zametki, 43:5 (1988), 604–614 | MR | Zbl

[7] V. I. Ivanov, S. A. Pichugov, “Konstanty Yunga $l_p^n$-prostranstv”, Matem. zametki, 48:4 (1990), 37–47 | MR | Zbl

[8] V. I. Ivanov, “O svyazi konstant Dzheksona i konstant Yunga prostranstv $L_p$”, Matem. zametki, 58:6 (1995), 828–836 | MR | Zbl

[9] V. I. Ivanov, Yunpin Lyu, “Otsenka snizu konstant Dzheksona v prostranstvakh $L_p$, $1\leq p2$, s periodicheskim vesom Yakobi”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 59–70

[10] S. S. Platonov, “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl

[11] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | Zbl

[13] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[14] A. G. Vitushkin, Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959 | MR | Zbl

[15] V. I. Ivanov, “Priblizhenie v $L_p$ kusochno-postoyannymi funktsiyami”, Matem. zametki, 44:1 (1988), 64–79 | MR | Zbl

[16] A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl

[17] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR | Zbl