On a Remarkable Sequence of Bessel Matrices
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 651-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence of matrices whose elements are modified Bessel functions of the first kind is considered. Such a sequence arises when studying certain ordinary linear homogeneous second-order differential equations belonging to the family of double confluent Heun equations. The conjecture that these matrices are nonsingular is discussed together with its application to the problem of the existence of solutions analytic at the singular point of the equation referred to above.
Keywords: modified Bessel function of the first kind, Josephson junction
Mots-clés : double confluent Heun equation, Bessel matrix, Laurent series, Hessenberg matrix.
@article{MZM_2015_98_5_a1,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {On a {Remarkable} {Sequence} of {Bessel} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--663},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - On a Remarkable Sequence of Bessel Matrices
JO  - Matematičeskie zametki
PY  - 2015
SP  - 651
EP  - 663
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/
LA  - ru
ID  - MZM_2015_98_5_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T On a Remarkable Sequence of Bessel Matrices
%J Matematičeskie zametki
%D 2015
%P 651-663
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/
%G ru
%F MZM_2015_98_5_a1
V. M. Buchstaber; S. I. Tertychnyi. On a Remarkable Sequence of Bessel Matrices. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 651-663. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/

[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. M. Abramowitz, I. A. Stegun, John Wiley Sons, New York, 1972 ; Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | Zbl | MR | Zbl

[2] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI

[3] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl

[4] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Part C, Heun's Differential Equations, Oxford Sci. Publ., ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[5] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Izd-vo “Nevskii dialekt”, SPb., 2002

[6] S. I. Tertychniy, The Modelling of a Josephson Junction and Heun Polynomials, 2006, arXiv: ; В. М. Бухштабер, С. И. Тертычный, “Семейство явных решений уравнения резистивной модели перехода Джозефсона”, ТМФ, 176:2 (2013), 163–188 math-ph/0601064 | DOI | MR | Zbl

[7] A. I. Markushevich, Teoriya analiticheskikh funktsii. T. 1. Nachala teorii, Nauka, M., 1967 | MR | Zbl

[8] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl