Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_5_a1, author = {V. M. Buchstaber and S. I. Tertychnyi}, title = {On a {Remarkable} {Sequence} of {Bessel} {Matrices}}, journal = {Matemati\v{c}eskie zametki}, pages = {651--663}, publisher = {mathdoc}, volume = {98}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/} }
V. M. Buchstaber; S. I. Tertychnyi. On a Remarkable Sequence of Bessel Matrices. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 651-663. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a1/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. M. Abramowitz, I. A. Stegun, John Wiley Sons, New York, 1972 ; Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | Zbl | MR | Zbl
[2] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI
[3] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl
[4] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Part C, Heun's Differential Equations, Oxford Sci. Publ., ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995 | MR | Zbl
[5] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Izd-vo “Nevskii dialekt”, SPb., 2002
[6] S. I. Tertychniy, The Modelling of a Josephson Junction and Heun Polynomials, 2006, arXiv: ; В. М. Бухштабер, С. И. Тертычный, “Семейство явных решений уравнения резистивной модели перехода Джозефсона”, ТМФ, 176:2 (2013), 163–188 math-ph/0601064 | DOI | MR | Zbl
[7] A. I. Markushevich, Teoriya analiticheskikh funktsii. T. 1. Nachala teorii, Nauka, M., 1967 | MR | Zbl
[8] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl