Limit Theorems for an~Infinite-Server Queuing System
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 590-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an infinite-server queuing system with a doubly stochastic Poisson input flow. Assuming that the service time does not have expectation, we prove limit theorems for the number of occupied servers. As a consequence, we obtain limit theorems for systems in which the input flow intensity is a regenerative process.
Keywords: infinite-server queuing system, doubly stochastic Poisson flow, regenerative process, limit theorem.
@article{MZM_2015_98_4_a8,
     author = {E. Chernsvakaya},
     title = {Limit {Theorems} for {an~Infinite-Server} {Queuing} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {590--605},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a8/}
}
TY  - JOUR
AU  - E. Chernsvakaya
TI  - Limit Theorems for an~Infinite-Server Queuing System
JO  - Matematičeskie zametki
PY  - 2015
SP  - 590
EP  - 605
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a8/
LA  - ru
ID  - MZM_2015_98_4_a8
ER  - 
%0 Journal Article
%A E. Chernsvakaya
%T Limit Theorems for an~Infinite-Server Queuing System
%J Matematičeskie zametki
%D 2015
%P 590-605
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a8/
%G ru
%F MZM_2015_98_4_a8
E. Chernsvakaya. Limit Theorems for an~Infinite-Server Queuing System. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 590-605. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a8/

[1] W. Kang, K. Ramanan, “Asymptotic approximations for stationary distributions of many-server queues with abandonment”, Ann. Appl. Probab., 22:2 (2012), 477–521 | DOI | MR | Zbl

[2] W. Whitt, “Efficiency-driven heavy-traffic approximations for many-server queues with abandonments”, Management Science, 50:10 (2004), 1449–1461 | DOI

[3] B. D'Auria, “Stochastic decomposition of the queue in a random environment”, Oper. Res. Lett., 35:6 (2007), 805–812 | DOI | MR | Zbl

[4] W. A. Massey, W. Ward, “Networks of infinite-server queues with nonstationary Poisson input”, Queueing Systems Theory Appl., 13:1-3 (1993), 183–250 | DOI | MR | Zbl

[5] L. G. Afanaseva, A. P. Bilenko, “Kharakteristika summarnogo potoka impulsov”, Voprosy radioelektroniki, 1972, no. 4

[6] L. G. Afanaseva, I. V. Rudenko, “Sistemy obsluzhivaniya $GI|G|\infty$ i ikh prilozheniya k analizu transportnykh modelei”, TVP, 57:3 (2012), 427–452 | DOI

[7] L. Lipsky, D. Derek, G. Swapna, “Checkpointing for the restart problem in Markov networks”, J. Appl. Probab., 48A, New frontiers in applied probability: a Festschrift for Søren Asmussen, (2011), 195–207 | DOI | MR | Zbl

[8] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR | Zbl

[9] H. Thorisson, “The coupling of regenerative processes”, Adv. Appl. Probab., 15:3 (1983), 531–561 | DOI | MR | Zbl

[10] N. Kaplan, “Limit theorems for a $GI/G/{\infty}$ queue”, Ann. Probab., 3:5 (1975), 780–789 | DOI | MR | Zbl

[11] J. Grandell, Doubly Stochastic Poisson Process, Lecture Notes in Math., 529, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[12] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[13] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[14] L. G. Afanaseva, E. V. Bulinskaya, Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo Mosk. un-ta, M., 1980 | Zbl

[15] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl

[16] V. S. Korolyuk, S. M. Brodi, A. F. Turbin, “Polumarkovskie protsessy i ikh primeneniya”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 11, VINITI, M., 1974, 47–97 | MR | Zbl

[17] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984 | MR | Zbl