Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in~$L_2$
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 511-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_2$, we study a number of smoothness characteristics of functions; our study is based on the use of the generalized shift operator $\tau_h$. For the case in which $\tau$ is the Steklov operator $S$, we obtain exact constants in Jackson-type inequalities for some classes of $2\pi$-periodic functions. We also calculate the exact values of the $n$-widths of function classes defined by the smoothness characteristics under consideration.
Keywords: Jackson-type inequality, $n$-width of a function class, Steklov operator, smoothness characteristic, generalized shift operator $\tau_h$, Minkowski's inequality, trigonometric polynomial, Rolle's theorem.
Mots-clés : majorant
@article{MZM_2015_98_4_a2,
     author = {S. B. Vakarchuk},
     title = {Generalized {Smoothness} {Characteristics} in {Jackson-Type} {Inequalities} and {Widths} of {Classes} of {Functions} in~$L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--529},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a2/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in~$L_2$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 511
EP  - 529
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a2/
LA  - ru
ID  - MZM_2015_98_4_a2
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in~$L_2$
%J Matematičeskie zametki
%D 2015
%P 511-529
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a2/
%G ru
%F MZM_2015_98_4_a2
S. B. Vakarchuk. Generalized Smoothness Characteristics in Jackson-Type Inequalities and Widths of Classes of Functions in~$L_2$. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 511-529. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a2/

[1] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer, New York, 1987 | DOI | MR | Zbl

[2] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl

[3] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[4] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[5] N. N. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | DOI | MR | Zbl

[6] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[7] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[8] V. Kokilashvili, Y. E. Yildirir, “On the approximation in weighted Lebesgue space”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl

[9] V. Kokilashvili, S. Samko, “A refined inverse inequality of approximation in weighted variable exponent Lebesgue space”, Proc. A. Razmadze Math. Inst., 151 (2009), 134–138 | MR | Zbl

[10] S. B. Vakarchuk, V. I. Zabutna, “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East J. Approxim., 14:4 (2008), 411–421 | MR | Zbl

[11] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl

[12] M. Sh. Shabozov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya $n$-poperechnikov nekotorykh klassov funktsii”, Izv. AN Respubliki Tadzhikistan. Otd. fiz.-matem., khim. i tekhn. nauk, 2010, no. 4, 7–24

[13] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | MR | Zbl

[14] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | Zbl

[15] S. D. Temurbekova, “Neravenstvo tipa Dzheksona–Stechkina dlya obobschennykh modulei nepreryvnosti i poperechniki nekotorykh funktsionalnykh klassov funktsii v prostranstve $L_2$”, Dokl. AN Respubliki Tadzhikistan, 56:4 (2013), 273–278

[16] K. Tukhliev, “O nailuchshem polinomialnom priblizhenii periodicheskikh funktsii v $L_2$ i poperechnikov nekotorykh klassov funktsii”, Dokl. AN Respubliki Tadzhikistan, 56:7 (2013), 515–520

[17] M. Sh. Shabozov, S. B. Vakarchuk, V. I. Zabutnaya, “Tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh funktsii v $L_2$ i znacheniya poperechnikov klassov funktsii”, Dokl. RAN, 451:6 (2013), 625–628 | DOI | MR | Zbl

[18] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[19] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[20] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[21] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i Yunga v prostranstvakh $L_p$, Tulskii gos. un-t, Tula, 1995

[22] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[23] S. B. Vakarchuk, V. I. Zabutnaya, “O nailuchshem polinomialnom priblizhenii v prostranstve $L_2$ i poperechnikakh nekotorykh klassov funktsii”, Ukr. matem. zhurn., 64:8 (2012), 1025–1032 | MR