Exact Values of Constants in the Generalized Triangle Inequality for Some $(1,q_2)$-Quasimetrics on Canonical Carnot Groups
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 635-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: generalized triangle inequality, graded Lie algebra, Campbell–Hausdorff formula, Engel group, Heisenberg group.
Mots-clés : box quasimetric, Carnot group
@article{MZM_2015_98_4_a12,
     author = {A. V. Greshnov and M. V. Tryamkin},
     title = {Exact {Values} of {Constants} in the {Generalized} {Triangle} {Inequality} for {Some} $(1,q_2)${-Quasimetrics} on {Canonical} {Carnot} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--639},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a12/}
}
TY  - JOUR
AU  - A. V. Greshnov
AU  - M. V. Tryamkin
TI  - Exact Values of Constants in the Generalized Triangle Inequality for Some $(1,q_2)$-Quasimetrics on Canonical Carnot Groups
JO  - Matematičeskie zametki
PY  - 2015
SP  - 635
EP  - 639
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a12/
LA  - ru
ID  - MZM_2015_98_4_a12
ER  - 
%0 Journal Article
%A A. V. Greshnov
%A M. V. Tryamkin
%T Exact Values of Constants in the Generalized Triangle Inequality for Some $(1,q_2)$-Quasimetrics on Canonical Carnot Groups
%J Matematičeskie zametki
%D 2015
%P 635-639
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a12/
%G ru
%F MZM_2015_98_4_a12
A. V. Greshnov; M. V. Tryamkin. Exact Values of Constants in the Generalized Triangle Inequality for Some $(1,q_2)$-Quasimetrics on Canonical Carnot Groups. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 635-639. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a12/

[1] A. V. Arutyunov, A. V. Greshnov, “Nakryvayuschie otobrazheniya v kvazimetricheskikh prostranstvakh i prostranstvakh Karno–Karateodori”, Izv. RAN. Ser. matem., 2015 (to appear)

[2] W. A. Wilson, Amer. J. Math, 53:3 (1931), 675–684 | DOI | MR | Zbl

[3] M. Karmanova, S. Vodop'yanov, Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | MR | Zbl

[4] L. P. Rothchild, E. S. Stein, Acta Math., 137:3-4 (1976), 247–320 | DOI | MR | Zbl

[5] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacian, Springer Monogr. Math., Springer-Verlag, Berlin, 2007 | MR | Zbl

[6] P. Pansu, Ann. of Math. (2), 129 (1989), 1–60 | DOI | MR | Zbl

[7] M. Gromov, Sub-Reimannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[8] A. V. Greshnov, Matem. tr., 14:1 (2011), 70–98 | MR

[9] A. Nagel, E. M. Stein, S. Wainger, Acta Math., 155:1-2 (1985), 103–147 | DOI | MR | Zbl

[10] A. V. Greshnov, Matem. tr., 15:2 (2012), 72–88 | MR

[11] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[12] M. M. Postnikov, Lektsii po geometrii. Semestr V. Gruppy i algebry Li, Nauka, M., 1982 | MR | Zbl

[13] A. Agrachev, D. Barilari, U. Boscain, Calc. Var. Partial Differential Equations, 43:3-4 (2012), 355–388 | DOI | MR | Zbl