Spectral Analysis of Integro-Differential Equations in Viscoelasticity and Thermal Physics
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 630-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: integro-differential equation, spectral analysis, operator function, heat conduction, viscoelasticity, materials with memory.
@article{MZM_2015_98_4_a11,
     author = {V. V. Vlasov and R. Perez Ortiz},
     title = {Spectral {Analysis} of {Integro-Differential} {Equations} in {Viscoelasticity} and {Thermal} {Physics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {630--634},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a11/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - R. Perez Ortiz
TI  - Spectral Analysis of Integro-Differential Equations in Viscoelasticity and Thermal Physics
JO  - Matematičeskie zametki
PY  - 2015
SP  - 630
EP  - 634
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a11/
LA  - ru
ID  - MZM_2015_98_4_a11
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A R. Perez Ortiz
%T Spectral Analysis of Integro-Differential Equations in Viscoelasticity and Thermal Physics
%J Matematičeskie zametki
%D 2015
%P 630-634
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a11/
%G ru
%F MZM_2015_98_4_a11
V. V. Vlasov; R. Perez Ortiz. Spectral Analysis of Integro-Differential Equations in Viscoelasticity and Thermal Physics. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 630-634. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a11/

[1] L. Pandolfi, Appl. Math. Optim., 52:2 (2005), 143–165 | DOI | MR | Zbl

[2] M. E. Gurtin, A. C. Pipkin, Arch. Rational Mech. Anal., 31:2 (1968), 113–126 | DOI | MR | Zbl

[3] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, Matematika, Vyp. 1, Sovremennye problemy matematiki i mekhaniki, VIII, Izd-vo Mosk. un-ta, M., 2011, 308

[4] G. Amendola, M. Fabrizio, J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York, 2012 | MR | Zbl

[5] V. V. Vlasov, N. A. Rautian, Tr. sem. im. I. G. Petrovskogo, 28, Izd-vo Mosk. un-ta, M., 2011, 75–113 | Zbl

[6] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, Dokl. RAN, 434:1 (2010), 12–15 | MR | Zbl

[7] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, Uravneniya v chastnykh proizvodnykh, SMFN, 39, RUDN, M., 2011, 36–65 | MR

[8] N. A. Rautian, Matem. zametki, 90:3 (2011), 470–473 | DOI | MR

[9] J. E. Muñoz Rivera, M. G. Naso, F. M. Vegni, J. Math. Anal. Appl., 286:2 (2003), 692–704 | DOI | MR | Zbl

[10] J. E. Muñoz Rivera, M. G. Naso, E. Vuk, Math. Methods Appl. Sci., 27:7 (2004), 819–841 | DOI | MR | Zbl

[11] J. E. Muñoz Rivera, M. G. Naso, Asymptotic Anal., 49:3-4 (2006), 189–204 | MR | Zbl

[12] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[13] R. Perez Ortiz, V. V. Vlasov, Correct Solvability of Hyperbolic Volterra Equations with Kernels Depending on the Parameter, arXiv: 1412.1067

[14] S. A. Ivanov, T. L. Sheronova, Spectrum of the Heat Equation with Memory, arXiv: 0912.1818v1

[15] R. Perez Ortiz, V. V. Vlasov, Spectra of the Gurtin–Pipkin Type Equations with the Kernel, Depending on the Parameter, arXiv: 1403.4382