Boundary-Value Problem with Nonlocal Integral Condition for Mixed-Type Equations with Degeneracy on the Transition Line
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 393-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an elliptic-hyperbolic type equation, the boundary-value problem with nonlocal Samarskii–Ionkin condition in a rectangular domain is solved. Using the spectral analysis method, a uniqueness criterion is established and the existence theorem for the solution of the problem is proved. The solution of the problem is constructed as the sum of a biorthogonal series.
Keywords: elliptic-hyperbolic type equation, boundary-value problem, Samarskii–Ionkin condition, spectral analysis, Bessel's equation, Weierstrass criterion.
@article{MZM_2015_98_3_a7,
     author = {Yu. K. Sabitova},
     title = {Boundary-Value {Problem} with {Nonlocal} {Integral} {Condition} for {Mixed-Type} {Equations} with {Degeneracy} on the {Transition} {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {393--406},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a7/}
}
TY  - JOUR
AU  - Yu. K. Sabitova
TI  - Boundary-Value Problem with Nonlocal Integral Condition for Mixed-Type Equations with Degeneracy on the Transition Line
JO  - Matematičeskie zametki
PY  - 2015
SP  - 393
EP  - 406
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a7/
LA  - ru
ID  - MZM_2015_98_3_a7
ER  - 
%0 Journal Article
%A Yu. K. Sabitova
%T Boundary-Value Problem with Nonlocal Integral Condition for Mixed-Type Equations with Degeneracy on the Transition Line
%J Matematičeskie zametki
%D 2015
%P 393-406
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a7/
%G ru
%F MZM_2015_98_3_a7
Yu. K. Sabitova. Boundary-Value Problem with Nonlocal Integral Condition for Mixed-Type Equations with Degeneracy on the Transition Line. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 393-406. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a7/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[2] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[3] K. B. Sabitov, “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl

[4] Yu. K. Sabitova, “Nelokalnye nachalno-granichnye zadachi dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2009, no. 12, 49–58 | MR | Zbl

[5] Yu. K. Sabitova, “Kriterii edinstvennosti resheniya nelokalnoi zadachi dlya vyrozhdayuschegosya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Differents. uravneniya, 46:8 (2010), 1205–1208 | MR | Zbl

[6] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[7] Yu. K. Sabitova, Kraevye zadachi s nelokalnym usloviem dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti, Dis. $\dots$ kand. fiz.-matem. nauk, SGPA, Sterlitamak, 2007

[8] F. Trikomi, Differentsialnye uravneniya, IL, M., 1962

[9] K. B. Sabitov, “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1966 | MR | Zbl