An Exact Solution of the Space Charge Problem for the Motion of a Spherically Symmetric Beam in a Homogeneous Electric Field
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 386-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an exact solution of the space charge problem for a uniformly charged ball moving in an exterior constant homogeneous electric field. The results obtained can be used as tests in the numerical simulation of the effect of a space charge of actual beams and for estimating the accuracy of the numerical methods used in the solution of the space charge problem.
Keywords: space charge problem, motion of a spherically symmetric beam (ball), homogeneous electric field, Newton's second law, Cauchy problem, Gauss's theorem.
@article{MZM_2015_98_3_a6,
     author = {E. E. Perepelkin and N. P. Repnikova and N. G. Inozemtseva},
     title = {An {Exact} {Solution} of the {Space} {Charge} {Problem} for the {Motion} of a {Spherically} {Symmetric} {Beam} in a {Homogeneous} {Electric} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {386--392},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a6/}
}
TY  - JOUR
AU  - E. E. Perepelkin
AU  - N. P. Repnikova
AU  - N. G. Inozemtseva
TI  - An Exact Solution of the Space Charge Problem for the Motion of a Spherically Symmetric Beam in a Homogeneous Electric Field
JO  - Matematičeskie zametki
PY  - 2015
SP  - 386
EP  - 392
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a6/
LA  - ru
ID  - MZM_2015_98_3_a6
ER  - 
%0 Journal Article
%A E. E. Perepelkin
%A N. P. Repnikova
%A N. G. Inozemtseva
%T An Exact Solution of the Space Charge Problem for the Motion of a Spherically Symmetric Beam in a Homogeneous Electric Field
%J Matematičeskie zametki
%D 2015
%P 386-392
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a6/
%G ru
%F MZM_2015_98_3_a6
E. E. Perepelkin; N. P. Repnikova; N. G. Inozemtseva. An Exact Solution of the Space Charge Problem for the Motion of a Spherically Symmetric Beam in a Homogeneous Electric Field. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 386-392. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a6/

[1] A. A. Vlasov, Ctatisticheskie funktsii raspredeleniya, Nauka, M., 1968

[2] N. G. Inozemtseva, B. I. Sadovnikov, “Evolyutsiya funktsionalnoi gipotezy N. N. Bogolyubova i nelokalnost protsessov perenosa v gidrodinamike tverdykh sfer”, EChAYa, 18:4 (1987), 878–903 | MR

[3] F. H. Harlow, “The particle-in-cell method for numerical solution of problems in fluid dynamics”, Proc. Symp. Applied Mathematics, 15, 1963, 269 | DOI

[4] B. I. Sadovnikov, E. E. Perepelkin, N. P. Repnikova, N. G. Inozemtseva, “Uchet effekta prostranstvennogo zaryada v gidrodinamicheskom priblizhenii”, Vestn. Mosk. un-ta. Ser. 3. Fiz., astron., 2014, no. 6, 53

[5] E. E. Perepelkin, N. G. Inozemtseva, A. A. Zhavoronkov, “The evolution of the charge density distribution function for spherically symmetric system with zero initial conditions”, World J. Condenced Matter Phys., 4 (2014), 33–38 | DOI

[6] B. I. Sadovnikov, A. A. Zhavoronkov, “The case of nonzero initial conditions in the evolution of the charge density distribution function for a spherically symmetric system”, J. Appl. Math. Phys., 2 (2014), 495–502 | DOI

[7] A. E. Kaplan, B. Y. Dubetsky, P. L. Shkolnikov, “Shock shells in Coulomb explosions of nanoclusters”, Phys. Rev. Lett., 91:14 (2003), 143401 | DOI