Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 378-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a locally Euclidean metric on a circular annulus admitting an isometric immersion in $\mathbb R^2$ which is multivalued of cylindrical type can be isometrically embedded in $\mathbb R^3$ as a cylindrical surface.
Keywords: locally Euclidean metric, isometric embedding, isometric immersion, cylindrical surface, planar graph.
@article{MZM_2015_98_3_a5,
     author = {S. N. Mikhalev and I. Kh. Sabitov},
     title = {Isometric {Embeddings} in~$\mathbb{R}^3$ of an {Annulus} with a {Locally} {Euclidean} {Metric} which {Are} {Multivalued} of {Cylindrical} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {378--385},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/}
}
TY  - JOUR
AU  - S. N. Mikhalev
AU  - I. Kh. Sabitov
TI  - Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type
JO  - Matematičeskie zametki
PY  - 2015
SP  - 378
EP  - 385
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/
LA  - ru
ID  - MZM_2015_98_3_a5
ER  - 
%0 Journal Article
%A S. N. Mikhalev
%A I. Kh. Sabitov
%T Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type
%J Matematičeskie zametki
%D 2015
%P 378-385
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/
%G ru
%F MZM_2015_98_3_a5
S. N. Mikhalev; I. Kh. Sabitov. Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 378-385. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/

[1] I. N. Vekua, Obobschennye analiticheskie funktsii, FIZMATLIT, M., 1959 | MR | Zbl

[2] I. Kh. Sabitov, “Izometricheskie pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb R^2$”, Izv. RAN. Ser. matem., 63:6 (1999), 147–166 | DOI | MR | Zbl

[3] I. Kh. Sabitov, “Izometricheskoe pogruzhenie lokalno-evklidovykh metrik v $\mathbb{R}^3$”, Sib. matem. zhurn., 26:3 (1985), 156–167 | MR | Zbl

[4] S. N. Mikhalev, I. Kh. Sabitov, “Izometricheskie vlozheniya lokalno-evklidovykh metrik v $\mathbb R^3$ v vide konicheskikh poverkhnostei”, Matem. zametki, 95:2 (2014), 234–247 | DOI | MR | Zbl