Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_3_a5, author = {S. N. Mikhalev and I. Kh. Sabitov}, title = {Isometric {Embeddings} in~$\mathbb{R}^3$ of an {Annulus} with a {Locally} {Euclidean} {Metric} which {Are} {Multivalued} of {Cylindrical} {Type}}, journal = {Matemati\v{c}eskie zametki}, pages = {378--385}, publisher = {mathdoc}, volume = {98}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/} }
TY - JOUR AU - S. N. Mikhalev AU - I. Kh. Sabitov TI - Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type JO - Matematičeskie zametki PY - 2015 SP - 378 EP - 385 VL - 98 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/ LA - ru ID - MZM_2015_98_3_a5 ER -
%0 Journal Article %A S. N. Mikhalev %A I. Kh. Sabitov %T Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type %J Matematičeskie zametki %D 2015 %P 378-385 %V 98 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/ %G ru %F MZM_2015_98_3_a5
S. N. Mikhalev; I. Kh. Sabitov. Isometric Embeddings in~$\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 378-385. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a5/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, FIZMATLIT, M., 1959 | MR | Zbl
[2] I. Kh. Sabitov, “Izometricheskie pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb R^2$”, Izv. RAN. Ser. matem., 63:6 (1999), 147–166 | DOI | MR | Zbl
[3] I. Kh. Sabitov, “Izometricheskoe pogruzhenie lokalno-evklidovykh metrik v $\mathbb{R}^3$”, Sib. matem. zhurn., 26:3 (1985), 156–167 | MR | Zbl
[4] S. N. Mikhalev, I. Kh. Sabitov, “Izometricheskie vlozheniya lokalno-evklidovykh metrik v $\mathbb R^3$ v vide konicheskikh poverkhnostei”, Matem. zametki, 95:2 (2014), 234–247 | DOI | MR | Zbl