Residually Finite Algorithmically Finite Groups, Their Subgroups and Direct Products
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 372-377
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct a finitely generated infinite recursively presented residually finite algorithmically finite group $G$, thus answering a question of Myasnikov and Osin. The group $G$ here is “strongly infinite” and “strongly algorithmically finite”, which means that $G$ contains an infinite Abelian normal subgroup and all finite Cartesian powers of $G$ are algorithmically finite (i.e., for any $n$, there is no algorithm writing out infinitely many pairwise distinct elements of the group $G^n$). We also formulate several open questions concerning this topic.
Keywords:
finitely generated group, residually finite group, algorithmically finite group.
@article{MZM_2015_98_3_a4,
author = {A. A. Klyachko and A. K. Mongush},
title = {Residually {Finite} {Algorithmically} {Finite} {Groups,} {Their} {Subgroups} and {Direct} {Products}},
journal = {Matemati\v{c}eskie zametki},
pages = {372--377},
year = {2015},
volume = {98},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a4/}
}
A. A. Klyachko; A. K. Mongush. Residually Finite Algorithmically Finite Groups, Their Subgroups and Direct Products. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 372-377. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a4/
[1] A. Myasnikov, D. Osin, “Algorithmically finite groups”, J. Pure Appl. Algebra, 215:11 (2011), 2789–2796, arXiv: 1012.1653 | DOI | MR
[2] B. Khoussainov, A. Miasnikov, “Finitely presented expansions of groups, semigroups, and algebras”, Trans. Amer. Math. Soc., 366:3 (2014), 1455–1474 | DOI | MR | Zbl
[3] E. S. Golod, I. R. Shafarevich, “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl
[4] M. Ershov, “Golod–Shafarevich groups: a survey”, Int. J. Algebra Comput., 22:5 (2012), 1230001, arXiv: 1206.0490 | DOI | MR | Zbl