Lovász' Theorem on the Chromatic Number of Spheres Revisited
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 470-471
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
chromatic number of spheres, Lovász' theorem, Erdős' conjecture on the chromatic number of spheres, Knezer graph, Hamming space, Boolean cube.
@article{MZM_2015_98_3_a15,
author = {A. M. Raigorodskii},
title = {Lov\'asz' {Theorem} on the {Chromatic} {Number} of {Spheres} {Revisited}},
journal = {Matemati\v{c}eskie zametki},
pages = {470--471},
year = {2015},
volume = {98},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/}
}
A. M. Raigorodskii. Lovász' Theorem on the Chromatic Number of Spheres Revisited. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 470-471. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/
[1] L. Lovász, Acta Sci. Math. (Szeged), 45 (1983), 317–323 | MR | Zbl
[2] J. Matoušek, Using the Borsuk–Ulam Theorem, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl
[3] A. M. Raigorodskii, Dokl. RAN, 432:2 (2010), 174–177 | MR | Zbl
[4] A. M. Raigorodskii, Combinatorica, 32:1 (2012), 111–123 | DOI | MR | Zbl
[5] A. M. Raigorodskii, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl
[6] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007