Lov\'asz' Theorem on the Chromatic Number of Spheres Revisited
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 470-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: chromatic number of spheres, Lovász' theorem, Erdős' conjecture on the chromatic number of spheres, Knezer graph, Hamming space, Boolean cube.
@article{MZM_2015_98_3_a15,
     author = {A. M. Raigorodskii},
     title = {Lov\'asz' {Theorem} on the {Chromatic} {Number} of {Spheres} {Revisited}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {470--471},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - Lov\'asz' Theorem on the Chromatic Number of Spheres Revisited
JO  - Matematičeskie zametki
PY  - 2015
SP  - 470
EP  - 471
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/
LA  - ru
ID  - MZM_2015_98_3_a15
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T Lov\'asz' Theorem on the Chromatic Number of Spheres Revisited
%J Matematičeskie zametki
%D 2015
%P 470-471
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/
%G ru
%F MZM_2015_98_3_a15
A. M. Raigorodskii. Lov\'asz' Theorem on the Chromatic Number of Spheres Revisited. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 470-471. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a15/

[1] L. Lovász, Acta Sci. Math. (Szeged), 45 (1983), 317–323 | MR | Zbl

[2] J. Matoušek, Using the Borsuk–Ulam Theorem, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl

[3] A. M. Raigorodskii, Dokl. RAN, 432:2 (2010), 174–177 | MR | Zbl

[4] A. M. Raigorodskii, Combinatorica, 32:1 (2012), 111–123 | DOI | MR | Zbl

[5] A. M. Raigorodskii, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl

[6] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007