Finite Groups with Large Irreducible Character
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 237-246
Voir la notice de l'article provenant de la source Math-Net.Ru
In the general case, the order of a finite nonidentity group $G$ is substantially larger than the squared degree of every irreducible character $\Theta$ of $G$, i.e., $\Theta(1)^2|G|$. In the present paper, we study finite groups with an irreducible character $\Theta$ such that
$$
|G|\le 2\Theta(1)^2.
$$
Keywords:
finite group, irreducible character, Sylow subgroup, Clifford theory, Fitting subgroup.
Mots-clés : Frobenius group, constituent, Galois group
Mots-clés : Frobenius group, constituent, Galois group
@article{MZM_2015_98_2_a8,
author = {L. S. Kazarin and S. S. Poiseeva},
title = {Finite {Groups} with {Large} {Irreducible} {Character}},
journal = {Matemati\v{c}eskie zametki},
pages = {237--246},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/}
}
L. S. Kazarin; S. S. Poiseeva. Finite Groups with Large Irreducible Character. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/