Finite Groups with Large Irreducible Character
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the general case, the order of a finite nonidentity group $G$ is substantially larger than the squared degree of every irreducible character $\Theta$ of $G$, i.e., $\Theta(1)^2|G|$. In the present paper, we study finite groups with an irreducible character $\Theta$ such that $$ |G|\le 2\Theta(1)^2. $$
Keywords: finite group, irreducible character, Sylow subgroup, Clifford theory, Fitting subgroup.
Mots-clés : Frobenius group, constituent, Galois group
@article{MZM_2015_98_2_a8,
     author = {L. S. Kazarin and S. S. Poiseeva},
     title = {Finite {Groups} with {Large} {Irreducible} {Character}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - S. S. Poiseeva
TI  - Finite Groups with Large Irreducible Character
JO  - Matematičeskie zametki
PY  - 2015
SP  - 237
EP  - 246
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/
LA  - ru
ID  - MZM_2015_98_2_a8
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A S. S. Poiseeva
%T Finite Groups with Large Irreducible Character
%J Matematičeskie zametki
%D 2015
%P 237-246
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/
%G ru
%F MZM_2015_98_2_a8
L. S. Kazarin; S. S. Poiseeva. Finite Groups with Large Irreducible Character. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a8/

[1] D. Gorenstein, Finite Groups, Harper Row Publ., New York, 1968 | MR | Zbl

[2] L. S. Kazarin, I. A. Sagirov, “O stepenyakh neprivodimykh kharakterov konechnykh prostykh grupp”, Algebra. Topologiya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 2, 2001, 113–123 | MR | Zbl

[3] N. Snyder, “Groups with a character of large degree”, Proc. Amer. Math. Soc., 136:6 (2008), 1893–1903 | DOI | MR | Zbl

[4] I. M. Isaacs, Character Theory of Finite Groups, Pure Appl. Math., 69, Academic Press, New York, 1976 | MR | Zbl

[5] J. S. Brodkey, “A note on finite groups with an abelian Sylow group”, Proc. Amer. Math. Soc., 14 (1963), 132–133 | DOI | MR | Zbl

[6] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[7] B. Amberg, L. S. Kazarin, “$ABA$-groups with cyclic subgroup $B$”, Tr. IMM UrO RAN, 18, no. 3, 2012, 10–22

[8] K. Zsigmondy, “Zur Theorie der Potenzenreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl

[9] V. I. Zenkov, “O $p$-blokakh defekta 0 v $p$-razreshimykh gruppakh”, Sbornik nauchnykh trudov, Tr. IMM UrO RAN, 3, 1995, 36–40 | MR | Zbl