An Example of a Compact Space of Uncountable Character for Which the Space $\exp_n(X)\setminus X$ is Normal
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 221-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under Jensen's axiom, a compact space $X$ of uncountable character such that the space $\exp_n(X)\setminus X$ is normal for each $n$ is constructed. Thereby, it is proved that the Arkhangelskii–Kombarov theorem on the countability of the character of a compact space whose square is normal outside the diagonal cannot be “naïvely” carried over to normal functors of finite degree.
Keywords: Katětov's theorem, square of a compact space, first-countable compact space, functor $\exp_n$, Jensen's axiom, normal functor.
@article{MZM_2015_98_2_a6,
     author = {A. V. Ivanov},
     title = {An {Example} of a {Compact} {Space} of {Uncountable} {Character} for {Which} the {Space} $\exp_n(X)\setminus X$ is {Normal}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - An Example of a Compact Space of Uncountable Character for Which the Space $\exp_n(X)\setminus X$ is Normal
JO  - Matematičeskie zametki
PY  - 2015
SP  - 221
EP  - 229
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a6/
LA  - ru
ID  - MZM_2015_98_2_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T An Example of a Compact Space of Uncountable Character for Which the Space $\exp_n(X)\setminus X$ is Normal
%J Matematičeskie zametki
%D 2015
%P 221-229
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a6/
%G ru
%F MZM_2015_98_2_a6
A. V. Ivanov. An Example of a Compact Space of Uncountable Character for Which the Space $\exp_n(X)\setminus X$ is Normal. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a6/

[1] V. V. Fedorchuk, “K teoreme Katetova o kube”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1989, no. 4, 93–96 | MR | Zbl

[2] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, Izd-vo Mosk. un-ta, M., 1988

[3] E. V. Schepin, “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–62 | MR | Zbl

[4] T. F. Zhuraev, “Funktor $\lambda$ i metrizuemost bikompaktov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1999, no. 4, 54–56 | MR | Zbl

[5] A. V. Ivanov, E. V. Kashuba, “O nasledstvennoi normalnosti prostranstv vida $\mathscr F(X)$”, Sib. matem. zhurn., 49:4 (2008), 813–824 | MR | Zbl

[6] A. V. Ivanov, “Svoistvo Katetova dlya polunormalnykh funktorov konechnoi stepeni”, Sib. matem. zhurn., 51:4 (2010), 778–784 | MR | Zbl

[7] A. P. Kombarov, “O normalnykh funktorakh stepeni $\ge 3$”, Matem. zametki, 76:1 (2004), 147–149 | DOI | MR | Zbl

[8] E. V. Kashuba, “Obobschennaya teorema Katetova dlya polunormalnykh funktorov”, Trudy PGU. Matematika, 2006, no. 13, 82–89 | MR

[9] A. V. Arhangel'skii, A. P. Kombarov, “On $\nabla$-normal spaces”, Topol. Appl., 35:2-3 (1990), 121–126 | DOI | MR | Zbl

[10] V. V. Fedorchuk, “Vpolne zamknutye otobrazheniya i ikh prilozheniya”, Fundament. i prikl. matem., 9:4 (2003), 105–235 | MR | Zbl

[11] A. V. Ivanov, “O nasledstvennoi separabelnosti i razmernosti proizvedenii bikompaktov”, Dokl. AN SSSR, 239:5 (1978), 1037–1040 | MR | Zbl

[12] V. V. Fedorchuk, “O moschnosti nasledstvenno separabelnykh bikompaktov”, Dokl. AN SSSR, 222:2 (1975), 302–305 | MR | Zbl

[13] S. Yu. Zholkov, A. S. Salychev, “Strelki i nasledstvennoe chislo Suslina v kvadratakh topologicheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1976, no. 1, 27–32 | Zbl