An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 180-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, every finite subgroup of the automorphism group of the polynomial algebra of rank two over a field of characteristic zero is conjugate to the subgroup of linear automorphisms. We show that this can fail for an arbitrary periodic subgroup. We construct an example of an Abelian $p$-subgroup of the automorphism group of the polynomial algebra of rank two over the field of complex numbers which is not conjugate to any subgroup of linear automorphisms.
Keywords: polynomial algebra of rank two, linear automorphism, $p$-subgroup, quasicyclic subgroup, algebra of formal power series.
@article{MZM_2015_98_2_a2,
     author = {V. G. Bardakov and M. V. Neshchadim},
     title = {An {Example} of a {Nonlinearizable} {Quasicyclic} {Subgroup} in the {Automorphism} {Group} of the {Polynomial} {Algebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {180--186},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - M. V. Neshchadim
TI  - An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra
JO  - Matematičeskie zametki
PY  - 2015
SP  - 180
EP  - 186
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/
LA  - ru
ID  - MZM_2015_98_2_a2
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A M. V. Neshchadim
%T An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra
%J Matematičeskie zametki
%D 2015
%P 180-186
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/
%G ru
%F MZM_2015_98_2_a2
V. G. Bardakov; M. V. Neshchadim. An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 180-186. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/

[1] A. J. Czerniakiewicz, “Automorphisms of a free associative algebra of rank 2. I”, Trans. Amer. Math. Soc., 160 (1971), 393–401 | MR | Zbl

[2] H. Kraft, G. Schwarz, “Finite automorphisms of affine $N$-space”, Automorphisms of Affine Spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, 55–66 | DOI | MR | Zbl

[3] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 14-e izd., In-t matem. SO RAN, Novosibirsk, 1999 | MR

[4] V. G. Bardakov, M. V. Neshchadim, Yu. V. Sosnovsky, “Groups of triangular automorphisms of a free associative algebra and a polynomial algebra”, J. Algebra, 362 (2012), 201–220 | DOI | MR | Zbl

[5] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wiskunde (3), 1 (1953), 33–41 | MR | Zbl

[6] P. M. Cohn, “The automorphism group of the free algebra of rank two”, Serdica Math. J., 28:3 (2002), 255–266 | MR | Zbl

[7] T. Igarashi, Finite Subgroups of the Automorphism Group of the Affine Plane, Thesis, Osaka University, 1977

[8] M. Masuda, L. Moser-Jauslin, T. Petrie, “Equivariant algebraic vector bundles over representations of reductive groups: applications”, Proc. Natl. Acad. Sci. USA, 88:20 (1991), 9065–9066 | DOI | MR | Zbl

[9] M. A. Shevelin, “Podgruppy avtomorfizmov svobodnoi algebry Li ranga 3”, Sib. matem. zhurn., 55:6 (2014), 1424–1427

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 4-e izd., Nauka, M., 1996 | MR