An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 180-186
Voir la notice de l'article provenant de la source Math-Net.Ru
As is well known, every finite subgroup of the automorphism group of the polynomial algebra of rank two over a field of characteristic zero is conjugate to the subgroup of linear automorphisms. We show that this can fail for an arbitrary periodic subgroup. We construct an example of an Abelian $p$-subgroup of the automorphism group of the polynomial algebra of rank two over the field of complex numbers which is not conjugate to any subgroup of linear automorphisms.
Keywords:
polynomial algebra of rank two, linear automorphism, $p$-subgroup, quasicyclic subgroup, algebra of formal power series.
@article{MZM_2015_98_2_a2,
author = {V. G. Bardakov and M. V. Neshchadim},
title = {An {Example} of a {Nonlinearizable} {Quasicyclic} {Subgroup} in the {Automorphism} {Group} of the {Polynomial} {Algebra}},
journal = {Matemati\v{c}eskie zametki},
pages = {180--186},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/}
}
TY - JOUR AU - V. G. Bardakov AU - M. V. Neshchadim TI - An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra JO - Matematičeskie zametki PY - 2015 SP - 180 EP - 186 VL - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/ LA - ru ID - MZM_2015_98_2_a2 ER -
%0 Journal Article %A V. G. Bardakov %A M. V. Neshchadim %T An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra %J Matematičeskie zametki %D 2015 %P 180-186 %V 98 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/ %G ru %F MZM_2015_98_2_a2
V. G. Bardakov; M. V. Neshchadim. An Example of a Nonlinearizable Quasicyclic Subgroup in the Automorphism Group of the Polynomial Algebra. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 180-186. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a2/