On Lagrangian Spheres in the Flag Variety $F^3$
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 314-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Lagrangian sphere, flag variety, Gelfand–Tsetlin polytope.
@article{MZM_2015_98_2_a17,
     author = {N. A. Tyurin},
     title = {On {Lagrangian} {Spheres} in the {Flag} {Variety} $F^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {314--317},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a17/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - On Lagrangian Spheres in the Flag Variety $F^3$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 314
EP  - 317
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a17/
LA  - ru
ID  - MZM_2015_98_2_a17
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T On Lagrangian Spheres in the Flag Variety $F^3$
%J Matematičeskie zametki
%D 2015
%P 314-317
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a17/
%G ru
%F MZM_2015_98_2_a17
N. A. Tyurin. On Lagrangian Spheres in the Flag Variety $F^3$. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 314-317. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a17/

[1] N. A. Tyurin, TMF, 167:2 (2011), 193–205 | DOI | MR | Zbl

[2] N. A. Tyurin, 96, no. 3, 2014, 476–479 | DOI

[3] V. Guillemin, S. Sternberg, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl

[4] T. Nishinou, Yu. Nohara, K. Ueda, Adv. Math., 224:2 (2010), 648–706 | DOI | MR | Zbl

[5] Yu. Nohara, K. Ueda, Floer Cohomologies of Non-Torus Fibers of the Gelfand–Cetlin System, arXiv: 1409.4049

[6] A. Weinstein, Ann. of Math. (2), 98:3 (1973), 377–410 | DOI | MR | Zbl