Asymptotically Sharp Markov-Type Inequalities for Trigonometric and Algebraic Polynomials
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 303-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: trigonometric and algebraic polynomials, Markov-type inequality, compact sets, Green function, Bernstein–Walsh inequality.
@article{MZM_2015_98_2_a14,
     author = {S. I. Kalmykov},
     title = {Asymptotically {Sharp} {Markov-Type} {Inequalities} for {Trigonometric} and {Algebraic} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {303--307},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a14/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - Asymptotically Sharp Markov-Type Inequalities for Trigonometric and Algebraic Polynomials
JO  - Matematičeskie zametki
PY  - 2015
SP  - 303
EP  - 307
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a14/
LA  - ru
ID  - MZM_2015_98_2_a14
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T Asymptotically Sharp Markov-Type Inequalities for Trigonometric and Algebraic Polynomials
%J Matematičeskie zametki
%D 2015
%P 303-307
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a14/
%G ru
%F MZM_2015_98_2_a14
S. I. Kalmykov. Asymptotically Sharp Markov-Type Inequalities for Trigonometric and Algebraic Polynomials. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 303-307. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a14/

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[2] V. Totik, Acta Math., 187:1 (2001), 139–160 | DOI | MR | Zbl

[3] V. Totik, “Bernstein and Markov type inequalities for trigonometric polynomials on general sets”, Int. Math. Res. Not. (to appear)

[4] B. Nagy, V. Totik, Constr. Approx., 37:2 (2013), 223–232 | DOI | MR | Zbl

[5] S. I. Kalmykov, B. Nagy, V. Totik, “Asymptotically Sharp Markov and Schur Inequalities on General Sets”, Complex Analysis and Operator Theory, 2014 | DOI

[6] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[7] T. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] V. Totik, Adv. Math., 252 (2014), 114–149 | DOI | MR | Zbl

[9] F. Peherstorfer, R. Steinbauer, SIAM J. Math. Anal., 32:2 (2000), 385–402 | DOI | MR | Zbl

[10] A. Ancona, Théorie du potentiel, Lecture Notes in Math., 1096, Springer-Verlag, Berlin, 1984, 34–68 | DOI | MR | Zbl

[11] A. A. Gonchar, Matem. sb., 78:4 (1969), 640–654 | MR | Zbl