Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_2_a10, author = {V. N. Chugunov}, title = {Representation of {Real} {Normal} $(T+H)$ {Matrices} in the {Case} where the {Skew-Symmetric} {Parts} of both {Summands} are {Skew-Circulant} {Matrices}}, journal = {Matemati\v{c}eskie zametki}, pages = {258--270}, publisher = {mathdoc}, volume = {98}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a10/} }
TY - JOUR AU - V. N. Chugunov TI - Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices JO - Matematičeskie zametki PY - 2015 SP - 258 EP - 270 VL - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a10/ LA - ru ID - MZM_2015_98_2_a10 ER -
%0 Journal Article %A V. N. Chugunov %T Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices %J Matematičeskie zametki %D 2015 %P 258-270 %V 98 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a10/ %G ru %F MZM_2015_98_2_a10
V. N. Chugunov. Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 258-270. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a10/
[1] V. N. Chugunov, “O kososimmetrichnoi chasti teplitsevogo slagaemogo v veschestvennoi normalnoi $T+H$-zadache”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 209–213 | MR | Zbl
[2] V. N. Chugunov, “O predstavlenii veschestvennykh normalnykh $(T+H)$-matrits v sluchae, kogda kososimmetrichnye chasti oboikh slagaemykh yavlyayutsya tsirkulyantami”, Matem. zametki, 96:2 (2014), 294–305 | DOI
[3] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl