Differential Substitutions for Vectorial Generalizations of the mKdV Equation
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 173-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential substitutions of arbitrary order for vectorial generalizations of the mKdV equation are considered. The fact that these equations admit only substitutions of the form $\boldsymbol u=F(\boldsymbol v,\boldsymbol v_x)$ is established.
Keywords: mKdV equation, vectorial generalization for the mKdV equation, differential substitution, Bäcklund transformation.
@article{MZM_2015_98_2_a1,
     author = {M. Yu. Balakhnev},
     title = {Differential {Substitutions} for {Vectorial} {Generalizations} of the {mKdV} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/}
}
TY  - JOUR
AU  - M. Yu. Balakhnev
TI  - Differential Substitutions for Vectorial Generalizations of the mKdV Equation
JO  - Matematičeskie zametki
PY  - 2015
SP  - 173
EP  - 179
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/
LA  - ru
ID  - MZM_2015_98_2_a1
ER  - 
%0 Journal Article
%A M. Yu. Balakhnev
%T Differential Substitutions for Vectorial Generalizations of the mKdV Equation
%J Matematičeskie zametki
%D 2015
%P 173-179
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/
%G ru
%F MZM_2015_98_2_a1
M. Yu. Balakhnev. Differential Substitutions for Vectorial Generalizations of the mKdV Equation. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/

[1] S. I. Svinolupov, V. V. Sokolov, “Vektorno-matrichnye obobscheniya klassicheskikh integriruemykh uravnenii”, TMF, 100:2 (1994), 214–218 | MR | Zbl

[2] S. I. Svinolupov, V. V. Sokolov, R. I. Yamilov, “Preobrazovaniya Beklunda dlya integriruemykh evolyutsionnykh uravnenii”, Dokl. AN SSSR, 271:4 (1983), 802–805 | MR | Zbl

[3] A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154 | Zbl

[4] M. Yu. Balakhnev, “Integriruemye vektornye izotropnye uravneniya, dopuskayuschie differentsialnye podstanovki pervogo poryadka”, Matem. zametki, 94:3 (2013), 323–330 | DOI | MR | Zbl

[5] M. Ju. Balakhnev, A. G. Meshkov, “Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions”, SIGMA, 4 (2008), 018, 29 pp. | DOI | MR | Zbl

[6] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Commun. Math. Phys., 232 (2002), 1–18 | DOI | MR | Zbl

[7] A. G. Meshkov, V. V. Sokolov, “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl

[8] M. Yu. Balakhnev, “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, TMF, 142:1 (2005), 13–20 | DOI | MR | Zbl

[9] M. Ju. Balakhnev, A. G. Meshkov, “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl