Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_2_a1, author = {M. Yu. Balakhnev}, title = {Differential {Substitutions} for {Vectorial} {Generalizations} of the {mKdV} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {173--179}, publisher = {mathdoc}, volume = {98}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/} }
M. Yu. Balakhnev. Differential Substitutions for Vectorial Generalizations of the mKdV Equation. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a1/
[1] S. I. Svinolupov, V. V. Sokolov, “Vektorno-matrichnye obobscheniya klassicheskikh integriruemykh uravnenii”, TMF, 100:2 (1994), 214–218 | MR | Zbl
[2] S. I. Svinolupov, V. V. Sokolov, R. I. Yamilov, “Preobrazovaniya Beklunda dlya integriruemykh evolyutsionnykh uravnenii”, Dokl. AN SSSR, 271:4 (1983), 802–805 | MR | Zbl
[3] A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154 | Zbl
[4] M. Yu. Balakhnev, “Integriruemye vektornye izotropnye uravneniya, dopuskayuschie differentsialnye podstanovki pervogo poryadka”, Matem. zametki, 94:3 (2013), 323–330 | DOI | MR | Zbl
[5] M. Ju. Balakhnev, A. G. Meshkov, “Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions”, SIGMA, 4 (2008), 018, 29 pp. | DOI | MR | Zbl
[6] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Commun. Math. Phys., 232 (2002), 1–18 | DOI | MR | Zbl
[7] A. G. Meshkov, V. V. Sokolov, “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, TMF, 139:2 (2004), 192–208 | DOI | MR | Zbl
[8] M. Yu. Balakhnev, “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, TMF, 142:1 (2005), 13–20 | DOI | MR | Zbl
[9] M. Ju. Balakhnev, A. G. Meshkov, “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl