Dynamics of the Logistic Equation with Delay
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 85-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The logistic equation supplemented with a summand characterizing delay is considered. The local and nonlocal dynamics of this equation are studied. For equations with delay, we use the standard Andronov–Hopf bifurcation methods and the asymptotic method developed by the author and based on the construction of special evolution equations defining the local dynamics of the equations containing delay. In addition, we study the existence and methods of constructing the asymptotics of nonlocal relaxation cycles. A comparison of the results obtained with those for the Hutchinson equation and some of its generalizations is given.
Keywords: logistic equation with delay, Hutchinson equation, relaxation cycle, slowly/rapidly oscillating solution
Mots-clés : Andronov–Hopf bifurcation, evolution equation, quasinormal form.
@article{MZM_2015_98_1_a6,
     author = {S. A. Kashchenko},
     title = {Dynamics of the {Logistic} {Equation} with {Delay}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a6/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Dynamics of the Logistic Equation with Delay
JO  - Matematičeskie zametki
PY  - 2015
SP  - 85
EP  - 100
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a6/
LA  - ru
ID  - MZM_2015_98_1_a6
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Dynamics of the Logistic Equation with Delay
%J Matematičeskie zametki
%D 2015
%P 85-100
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a6/
%G ru
%F MZM_2015_98_1_a6
S. A. Kashchenko. Dynamics of the Logistic Equation with Delay. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a6/

[1] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(A-By(t-\tau))y(t)$”, Contributions to the Theory of Non-Linear Oscillations, Vol. IV, Ann. Math. Stud., 41, Princeton Univ. Press, Princeton, NJ, 1958, 1–18 | MR | Zbl

[2] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)\{1+f(x)\}$”, J. Math. Anal. Appl., 5:3 (1962), 435–450 | DOI | MR | Zbl

[3] S. A. Kashchenko, “Asymptotics of the solutions of the generalized Hutchinson equation”, Automat. Control Comput. Sci., 47:7 (2013), 470–494 | DOI

[4] S. A. Kaschenko, “O periodicheskikh resheniyakh uravneniya $x'(t)=-lx(t-1)[1+x(t)]$”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 110–117

[5] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22

[6] S. A. Kaschenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differents. uravneniya, 25:8 (1989), 1448–1451 | MR

[7] S. A. Kaschenko, “Normalisation in the systems with small diffusion”, Int. J. Bifurcation Chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[8] S. A. Kaschenko, “Uravneniya Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR | Zbl

[9] I. S. Kaschenko, “Asimptoticheskii analiz povedeniya reshenii uravneniya s bolshim zapazdyvaniem”, Dokl. RAN, 421:5 (2008), 586–589 | MR | Zbl

[10] I. S. Kaschenko, S. A. Kaschenko, “Dinamika uravneniya s bolshim prostranstvenno-raspredelennym upravleniem”, Dokl. RAN, 438:1 (2011), 30–34 | MR | Zbl

[11] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno raznostnykh uravnenii, modeliruyuschikh zadachu khischnik zhertva”, Dokl. AN SSSR, 266 (1982), 792–795 | MR | Zbl

[12] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[13] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[14] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl

[15] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Spravochnaya matematicheskaya biblioteka, 11, Nauka, M., 1990 | MR | Zbl

[16] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR | Zbl