Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_1_a3, author = {S. S. Volosivets and B. I. Golubov}, title = {Uniform {Convergence} and {Integrability} of {Multiplicative} {Fourier} {Transforms}}, journal = {Matemati\v{c}eskie zametki}, pages = {44--60}, publisher = {mathdoc}, volume = {98}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a3/} }
TY - JOUR AU - S. S. Volosivets AU - B. I. Golubov TI - Uniform Convergence and Integrability of Multiplicative Fourier Transforms JO - Matematičeskie zametki PY - 2015 SP - 44 EP - 60 VL - 98 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a3/ LA - ru ID - MZM_2015_98_1_a3 ER -
S. S. Volosivets; B. I. Golubov. Uniform Convergence and Integrability of Multiplicative Fourier Transforms. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 44-60. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a3/
[1] M. Dyachenko, E. Liflyand, S. Tikhonov, “Uniform convergence and integrability of Fourier integrals”, J. Math. Anal. Appl., 372:1 (2010), 328–338 | DOI | MR | Zbl
[2] G. Sampson, G. Tuy, “Fourier transforms and their Lipschitz classes”, Pacific J. Math., 75:2 (1978), 519–537 | DOI | MR | Zbl
[3] F. Moricz, “Best possible sufficient conditions for the Fourier transform to satisfy Lipschitz or Zygmund condition”, Studia Math., 199:2 (2010), 199–205 | DOI | MR | Zbl
[4] E. Liflyand, S. Tikhonov, “Extended solution of Boas' conjecture on Fourier transforms”, C.R. Acad. Sci. Paris, Ser.I., 346:21-22 (2008), 1137–1142 | DOI | MR | Zbl
[5] S. S. Volosivets, B. I. Golubov, “Vesovaya integriruemost multiplikativnykh preobrazovanii Fure”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 71–81 | MR | Zbl
[6] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[7] C. W. Onneweer, “Generalized Lipschitz spaces and Herz spaces on certain totally disconnected groups”, Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math., 939, Springer-Verlag, Berlin, 1982, 106–121 | DOI | MR | Zbl
[8] B. I. Golubov, S. S. Volosivets, “On the integrability and uniform convergence of multiplicative Fourier transforms”, Georgian Math. J., 16:3 (2009), 533–546 | MR | Zbl
[9] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl
[10] J. S. Bradley, “Hardy inequalities with mixed norms”, Canad. Math. Bull., 21:4 (1978), 405–408 | DOI | MR | Zbl
[11] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl
[12] C. W. Onneweer, “The Fourier transform of Herz spaces on certain groups”, Monatsch. Math., 97:4 (1984), 297–310 | DOI | MR | Zbl
[13] S. S. Volosivets, “Fourier transforms and generalized Lipschitz classes in uniform metric”, J. Math. Anal. Appl., 383:2 (2011), 344–352 | DOI | MR | Zbl
[14] S. S. Volosivets, “O modifitsirovannykh multiplikativnykh integrale i proizvodnoi proizvolnogo poryadka na poluosi”, Izv. RAN. Ser. matem., 70:2 (2006), 3–24 | DOI | MR | Zbl
[15] S. Fridli, “On the rate of convergence of Cesaro means of Walsh-Fourier series”, J. Approx. Theory, 76:1 (1994), 31–53 | DOI | MR | Zbl